Объект, содержащий доверительный интервал, заканчивается для предполагаемых параметров
ParameterConfidenceInterval
объект содержит результаты доверительного интервала для предполагаемых параметров.
Создайте использование объекта доверительного интервала параметра sbioparameterci
.
Type
— Тип доверительного интервала'gaussian'
| 'profileLikelihood'
| 'bootstrap'
Это свойство доступно только для чтения.
Тип доверительного интервала в виде 'gaussian'
, 'profileLikelihood'
, или 'bootstrap'
.
Пример: 'bootstrap'
Alpha
— Доверительный уровеньЭто свойство доступно только для чтения.
Доверительный уровень, (1-Alpha) * 100%
В виде положительной скалярной величины между 0 и 1.
Пример: 0.01
GroupNames
— Исходные названия группы из данных используются для подбора кривойЭто свойство доступно только для чтения.
Исходные названия группы из данных, используемых для того, чтобы подбирать модель в виде массива ячеек из символьных векторов. Каждая ячейка содержит имя группы.
Пример: {'1'}{'2'}{'3'}
Results
— Результаты доверительного интервалаЭто свойство доступно только для чтения.
Доверительный интервал заканчивается в виде таблицы. Таблица содержит следующие столбцы.
ColumnName | Описание |
---|---|
Name | Имя предполагаемого параметра |
Estimate | Предполагаемое значение параметров |
Bounds | Более низкие и верхние границы параметра (если задано в исходной подгонке) |
Group | Название группы (при наличии) |
CategoryVariableName | Имя категории (если задано в исходной подгонке) |
CategoryValue | Значение переменной категории задано CategoryVariableName |
ConfidenceInterval | Значения доверительного интервала |
Status | Состояние оценки доверительного интервала в виде одного из следующих категориальных значений: success , constrained , estimable , not estimable (для деталей смотрите Состояние Оценки Доверительного интервала Параметра), |
ExitFlags
— Выйдите из флагов, возвращенных во время вычисления bootstrap
доверительные интервалыЭто свойство доступно только для чтения.
Выйдите из флагов, возвращенных во время вычисления bootstrap
доверительные интервалы только в виде вектора из целых чисел. Каждое целое число является выходным флагом, возвращенным функцией оценки (кроме nlinfit
) используемый, чтобы соответствовать параметрам во время начальной загрузки. Та же функция оценки, используемая в исходной подгонке, используется для начальной загрузки.
Каждый флаг указывает на состояние успешности или неуспешности подбора кривой, выполняемого, чтобы создать выборку начальной загрузки. Обратитесь к странице с описанием соответствующей функции оценки для значения выходного флага.
Если функция оценки не возвращает выходной флаг, ExitFlags
установлен в []
. Для gaussian
и profileLikelihood
доверительные интервалы, ExitFlags
не поддерживается и всегда устанавливается в []
.
Загрузка данных
Загрузите выборочные данные, чтобы соответствовать. Данные хранятся как таблица с переменными ID, Время, CentralConc и PeripheralConc. Эти синтетические данные представляют ход времени плазменных концентраций, измеренных в восьми различных моментах времени и для центральных и для периферийных отсеков после капельного внутривенного введения для трех индивидуумов.
load data10_32R.mat gData = groupedData(data); gData.Properties.VariableUnits = {'','hour','milligram/liter','milligram/liter'}; sbiotrellis(gData,'ID','Time',{'CentralConc','PeripheralConc'},'Marker','+',... 'LineStyle','none');
Создайте модель
Создайте модель 2D отсека.
pkmd = PKModelDesign; pkc1 = addCompartment(pkmd,'Central'); pkc1.DosingType = 'Infusion'; pkc1.EliminationType = 'linear-clearance'; pkc1.HasResponseVariable = true; pkc2 = addCompartment(pkmd,'Peripheral'); model = construct(pkmd); configset = getconfigset(model); configset.CompileOptions.UnitConversion = true;
Задайте дозирование
Задайте капельное внутривенное введение.
dose = sbiodose('dose','TargetName','Drug_Central'); dose.StartTime = 0; dose.Amount = 100; dose.Rate = 50; dose.AmountUnits = 'milligram'; dose.TimeUnits = 'hour'; dose.RateUnits = 'milligram/hour';
Задайте параметры
Задайте параметры, чтобы оценить. Установите границы параметра для каждого параметра. В дополнение к этим явным границам преобразования параметра (такие как журнал, логит или пробит) налагают неявные границы.
responseMap = {'Drug_Central = CentralConc','Drug_Peripheral = PeripheralConc'}; paramsToEstimate = {'log(Central)','log(Peripheral)','Q12','Cl_Central'}; estimatedParam = estimatedInfo(paramsToEstimate,... 'InitialValue',[1 1 1 1],... 'Bounds',[0.1 3;0.1 10;0 10;0.1 2]);
Подбирайте модель
Выполните необъединенную подгонку, то есть, один набор предполагаемых параметров для каждого пациента.
unpooledFit = sbiofit(model,gData,responseMap,estimatedParam,dose,'Pooled',false);
Выполните объединенную подгонку, то есть, один набор предполагаемых параметров для всех пациентов.
pooledFit = sbiofit(model,gData,responseMap,estimatedParam,dose,'Pooled',true);
Вычислите доверительные интервалы для предполагаемых параметров
Вычислите 95% доверительных интервалов для каждого предполагаемого параметра в необъединенной подгонке.
ciParamUnpooled = sbioparameterci(unpooledFit);
Отображение результатов
Отобразите доверительные интервалы в формате таблицы. Для получения дополнительной информации о значении каждого состояния оценки, смотрите Состояние Оценки Доверительного интервала Параметра.
ci2table(ciParamUnpooled)
ans = 12x7 table Group Name Estimate ConfidenceInterval Type Alpha Status _____ ______________ ________ __________________ ________ _____ ___________ 1 {'Central' } 1.422 1.1533 1.6906 Gaussian 0.05 estimable 1 {'Peripheral'} 1.5629 0.83143 2.3551 Gaussian 0.05 constrained 1 {'Q12' } 0.47159 0.20093 0.80247 Gaussian 0.05 constrained 1 {'Cl_Central'} 0.52898 0.44842 0.60955 Gaussian 0.05 estimable 2 {'Central' } 1.8322 1.7893 1.8751 Gaussian 0.05 success 2 {'Peripheral'} 5.3368 3.9133 6.7602 Gaussian 0.05 success 2 {'Q12' } 0.27641 0.2093 0.34351 Gaussian 0.05 success 2 {'Cl_Central'} 0.86034 0.80313 0.91755 Gaussian 0.05 success 3 {'Central' } 1.6657 1.5818 1.7497 Gaussian 0.05 success 3 {'Peripheral'} 5.5632 4.7557 6.3708 Gaussian 0.05 success 3 {'Q12' } 0.78361 0.65581 0.91142 Gaussian 0.05 success 3 {'Cl_Central'} 1.0233 0.96375 1.0828 Gaussian 0.05 success
Постройте доверительные интервалы. Если состоянием оценки доверительного интервала является success
, это построено в синем (первый цвет по умолчанию). В противном случае это построено в красном (второй цвет по умолчанию), который указывает, что дальнейшее расследование подходящих параметров может требоваться. Если доверительным интервалом является not estimable
, затем графики функций красная линия с крестом в центре. Если существуют какие-либо преобразованные параметры с ориентировочными стоимостями 0 (для журнала, преобразовывают) и 1 или 0 (для пробита, или логит преобразовывают), то никакие доверительные интервалы не построены для тех оценок параметра. Чтобы видеть последовательность цветов, введите get(groot,'defaultAxesColorOrder')
.
Группы отображены слева направо в том же порядке, что они появляются в GroupNames
свойство объекта, который используется, чтобы пометить ось X. Y-метки являются преобразованными названиями параметра.
plot(ciParamUnpooled)
Вычислите доверительные интервалы для объединенной подгонки.
ciParamPooled = sbioparameterci(pooledFit);
Отобразите доверительные интервалы.
ci2table(ciParamPooled)
ans = 4x7 table Group Name Estimate ConfidenceInterval Type Alpha Status ______ ______________ ________ __________________ ________ _____ ___________ pooled {'Central' } 1.6626 1.3287 1.9965 Gaussian 0.05 estimable pooled {'Peripheral'} 2.687 0.89848 4.8323 Gaussian 0.05 constrained pooled {'Q12' } 0.44956 0.11445 0.85152 Gaussian 0.05 constrained pooled {'Cl_Central'} 0.78493 0.59222 0.97764 Gaussian 0.05 estimable
Постройте доверительные интервалы. Название группы помечено, как "объединено", чтобы указать на такую подгонку.
plot(ciParamPooled)
Постройте все результаты доверительного интервала вместе. По умолчанию доверительный интервал для каждой оценки параметра построен на отдельные оси. Вертикальные доверительные интервалы группы линий оценок параметра, которые были вычислены в общей подгонке.
ciAll = [ciParamUnpooled;ciParamPooled]; plot(ciAll)
Можно также построить все доверительные интервалы в осях, сгруппированных оценками параметра с помощью 'Сгруппированного' размещения.
plot(ciAll,'Layout','Grouped')
В этом размещении можно указать на центральный маркер каждого доверительного интервала, чтобы видеть название группы. Каждый предполагаемый параметр разделяется вертикальной черной линией. Вертикальные доверительные интервалы группы пунктирных линий оценок параметра, которые были вычислены в общей подгонке. Границы параметра, заданные в исходной подгонке, отмечены квадратными скобками. Отметьте различные шкалы на оси Y из-за преобразований параметра. Например, ось Y Q12
находится в линейной шкале, но том из Central
находится в логарифмической шкале из-за ее журнала, преобразовывают.
Вычислите доверительные интервалы для предсказаний модели
Вычислите 95% доверительных интервалов для предсказаний модели, то есть, результаты симуляции с помощью предполагаемых параметров.
% For the pooled fit ciPredPooled = sbiopredictionci(pooledFit); % For the unpooled fit ciPredUnpooled = sbiopredictionci(unpooledFit);
Постройте доверительные интервалы для предсказаний модели
Доверительный интервал для каждой группы построен в отдельном столбце, и каждый ответ построен в отдельной строке. Доверительные интервалы, ограниченные границами, построены в красном. Доверительные интервалы, не ограниченные границами, построены в синем.
plot(ciPredPooled)
plot(ciPredUnpooled)
Следующее является определениями состояний оценки доверительного интервала для различных типов доверительных интервалов.
not estimable
– Доверительный интервал неограничен.
constrained
– Доверительный интервал ограничивается параметром, связанным заданный в исходной подгонке. Преобразования параметра (такой как log
, probit
, или logit
) наложите неявные границы на предполагаемые параметры, например, ограничения положительности. Такие границы могут привести к переоценке доверия, то есть, доверительный интервал может быть меньшим, чем ожидалось.
success
– Все доверительные интервалы для всех параметров вычисляются успешно.
estimable
– Доверительный интервал вычисляется успешно, но другие параметры имеют состояние оценки not estimable
или constrained
.
Для получения дополнительной информации об алгоритме, смотрите Гауссово Вычисление Доверительного интервала.
not estimable
– Расчет доверительного интервала неудачен. Это может произойти, когда кривая вероятности профиля строго монотонно не уменьшается, или из-за отказов расчета в вероятности профиля.
constrained
– Кривая вероятности профиля ограничена границами на предполагаемых параметрах, заданных в исходной подгонке. Преобразования параметра, такой как log
, logit
, probit
, наложите неявные границы на предполагаемые параметры, например, ограничения положительности.
success
– Если нет никакой оценки параметра с состоянием constrained
оценки доверительного интервала или
not estimable
, затем функция устанавливает все состояния оценки на success
.
estimable
– Доверительный интервал вычисляется успешно, но другие параметры имеют состояние оценки not estimable
или constrained
.
Для получения дополнительной информации об алгоритме, смотрите Вычисление Доверительного интервала Вероятности Профиля.
constrained
– Доверительный интервал ближе, чем Tolerance
к границам параметра, заданным в исходной подгонке.
success
– Все доверительные интервалы были еще дальше от границ параметра, чем Tolerance
.
estimable
– Доверительный интервал вычисляется успешно, но другие параметры имеют состояние оценки constrained
.
Для получения дополнительной информации об алгоритме, смотрите Вычисление Доверительного интервала Начальной загрузки.
PredictionConfidenceInterval
| sbioparameterci
| sbiopredictionci
У вас есть модифицированная версия этого примера. Вы хотите открыть этот пример со своими редактированиями?
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.