Вычислите индексы Sobol для нового заметного выражения
вычисляет индексы Sobol для нового observables, заданного results
= addobservable(sobolObj
,obsNames
,obsExpressions
)obsNames
с соответствующими выражениями obsExpressions
.
задает модули для новых заметных выражений. Функция выполняет модульное преобразование для заметных выражений, только если вы устанавливаете results
= addobservable(sobolObj
,obsNames
,obsExpressions
,'Units',units
)UnitConversion
к true
.
Загрузите модель роста опухоли.
sbioloadproject tumor_growth_vpop_sa.sbproj
Заставьте вариант предполагаемыми параметрами и дозой применяться к модели.
v = getvariant(m1);
d = getdose(m1,'interval_dose');
Получите активный configset и установите вес опухоли как ответ.
cs = getconfigset(m1);
cs.RuntimeOptions.StatesToLog = 'tumor_weight';
Симулируйте модель и постройте профиль роста опухоли.
sbioplot(sbiosimulate(m1,cs,v,d));
Выполните глобальный анализ чувствительности (GSA) на модели, чтобы найти параметры модели, к которым рост опухоли чувствителен.
Во-первых, получите параметры модели интереса, которые вовлечены в фармакодинамику роста опухоли. Задайте ответ модели как вес опухоли.
modelParamNames = {'L0','L1','w0','k1','k2'}; outputName = 'tumor_weight';
Затем выполните GSA путем вычисления первого - и общий порядок индексы Sobol с помощью sbiosobol
. Установите 'ShowWaitBar'
к true
показать прогресс симуляции. По умолчанию функция использует 1 000 выборок параметра, чтобы вычислить индексы Sobol [1].
sobolResults = sbiosobol(m1,modelParamNames,outputName,'Variants',v,'Doses',d,'ShowWaitBar',true)
sobolResults = Sobol with properties: Time: [444x1 double] SobolIndices: [5x1 struct] Variance: [444x1 table] Observables: {'[Tumor Growth Model].tumor_weight'} ParameterSamples: [1000x5 table] SimulationInfo: [1x1 struct]
Можно изменить количество выборок путем определения 'NumberSamples'
аргумент пары "имя-значение". Функция требует в общей сложности (number of input parameters + 2) * NumberSamples
симуляции модели.
Покажите средний ответ модели, результаты симуляции и теневую область, покрывающую 90% результатов симуляции.
plotData(sobolResults);
Можно настроить область квантиля к различному проценту путем определения 'Alphas'
для более низких и верхних квантилей всех ответов модели. Например, альфа-значение 0,1 графиков теневая область между 100 * alpha
и 100 * (1 - alpha)
квантили всех симулированных ответов модели.
plotData(sobolResults,'Alphas',0.1);
Постройте курс времени первого - и общий порядок индексы Sobol.
h = plot(sobolResults);
% Resize the figure.
h.Position(:) = [100 100 1280 800];
Индекс Sobol первого порядка входного параметра дает часть полного отклонения ответа, которое может быть приписано изменениям одного только входного параметра. Индекс общего порядка дает часть полного отклонения ответа, которое может быть приписано любым объединенным изменениям параметра, которые включают изменения входного параметра.
Из графиков индексов Sobol, параметры L1
и w0
кажется, самые чувствительные параметры к весу опухоли, прежде чем доза была применена в t = 7. Но после того, как доза применяется, k1
и k2
станьте более чувствительными параметрами и способствуйте больше всего дозируемому после того, как этапу веса опухоли. Общий график отклонения также показывает большее отклонение для этапа после-того,-как-дозы в t> 35, чем для этапа прежде-чем-дозы роста опухоли, указывая на тот k1
и k2
могут быть более важные параметры, чтобы заняться расследованиями далее. Часть необъясненного отклонения показывает некоторое отклонение приблизительно в t = 33, но общий график отклонения показывает мало отклонения в t = 33, означая, что необъясненное отклонение могло быть незначительным. Часть необъясненного отклонения вычисляется как 1 - (сумма всех индексов Sobol первого порядка), и общее отклонение вычисляется с помощью var(response)
, где response
ответ модели в каждом моменте времени.
Можно также отобразить величины чувствительности в столбиковой диаграмме.
bar(sobolResults)
Можно задать больше выборок, чтобы увеличить точность индексов Sobol, но симуляция может занять больше времени, чтобы закончиться. Используйте addsamples
добавить больше выборок. Например, если вы задаете 1 500 выборок, функция выполняет 1500 * (2 + number of input parameters)
симуляции.
gsaMoreSamples = addsamples(gsaResults,1500)
Свойство SimulationInfo объекта результата содержит различную информацию для вычисления индексов Sobol. Например, данные о симуляции модели (SimData) для каждой симуляции с помощью набора выборок параметра хранятся в SimData
поле свойства. Это поле является массивом SimData
объекты.
sobolResults.SimulationInfo.SimData
SimBiology SimData Array : 1000-by-7 Index: Name: ModelName: DataCount: 1 - Tumor Growth Model 1 2 - Tumor Growth Model 1 3 - Tumor Growth Model 1 ... 7000 - Tumor Growth Model 1
Можно узнать, перестала ли какая-либо симуляция модели работать во время расчета путем проверки ValidSample
поле SimulationInfo
. В этом примере поле не показывает не пройдено запусков симуляции.
all(sobolResults.SimulationInfo.ValidSample)
ans = 1x7 logical array
1 1 1 1 1 1 1
SimulationInfo.ValidSample
таблица логических значений. Это имеет тот же размер как SimulationInfo.SimData
. Если ValidSample
указывает, что любые симуляции перестали работать, можно получить больше информации о тех запусках симуляции и выборках, используемых для тех запусков путем извлечения информации из соответствующего столбца SimulationInfo.SimDat
a. Предположим, что четвертый столбец содержит один или несколько не пройдено запусков симуляции. Получите данные моделирования и демонстрационные значения, используемые для той симуляции с помощью getSimulationResults
.
[samplesUsed,sd,validruns] = getSimulationResults(sobolResults,4);
Можно добавить пользовательские выражения как observables и вычислить индексы Sobol для добавленного observables. Например, можно вычислить индексы Sobol для максимального веса опухоли путем определения пользовательского выражения можно следующим образом.
% Suppress an information warning that is issued during simulation. warnSettings = warning('off', 'SimBiology:sbservices:SB_DIMANALYSISNOTDONE_MATLABFCN_UCON'); % Add the observable expression. sobolObs = addobservable(sobolResults,'Maximum tumor_weight','max(tumor_weight)','Units','gram');
Постройте вычисленные результаты симуляции, показывающие 90%-ю область квантиля.
h2 = plotData(sobolObs); h2.Position(:) = [100 100 1280 800];
Можно также удалить заметное путем определения его имени.
gsaNoObs = removeobservable(sobolObs,'Maximum tumor_weight');
Восстановите настройки предупреждения.
warning(warnSettings);
sobolObj
— Результаты, содержащие индексы SobolSimBiology.gsa.Sobol
объектРезультаты, содержащие первое - и общий порядок индексы Sobol в виде SimBiology.gsa.Sobol
объект.
obsNames
— Имена заметных выраженийИмена заметных выражений в виде вектора символов, строки, представляют в виде строки вектор или массив ячеек из символьных векторов.
Типы данных: char |
string
| cell
obsExpressions
— Заметные выраженияЗаметные выражения в виде вектора символов, строки, представляют в виде строки вектор или массив ячеек из символьных векторов.
Типы данных: char |
string
| cell
units
— Заметные модулиЗаметные модули в виде вектора символов, строки, представляют в виде строки вектор или массив ячеек из символьных векторов.
Типы данных: char |
string
| cell
results
— Вычисленные индексы Sobol для observablesSimBiology.gsa.Sobol
Вычисленные индексы Sobol для добавленного observables, возвращенного как SimBiology.gsa.Sobol
объект.
[1] Сальтелли, Андреа, Паола Аннони, Ivano Azzini, Франческа Камполонго, Марко Ратто и Стефано Тарантола. “Основанный на отклонении Анализ чувствительности Выхода Модели. Проект и Средство оценки для Общего индекса Чувствительности”. Computer Physics Communications 181, № 2 (февраль 2010): 259–70. https://doi.org/10.1016/j.cpc.2009.09.018.
У вас есть модифицированная версия этого примера. Вы хотите открыть этот пример со своими редактированиями?
Вы щелкнули по ссылке, которая соответствует команде MATLAB:
Выполните эту команду, введя её в командном окне MATLAB.
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.