Потеря классификации для Гауссовой модели классификации ядер
возвращает потерю классификации для модели L
= loss(Mdl
,Tbl
,ResponseVarName
)Mdl
использование данных о предикторе в Tbl
и истинный класс помечает в Tbl.ResponseVarName
.
задает опции с помощью одного или нескольких аргументов пары "имя-значение" в дополнение к любой из комбинаций входных аргументов в предыдущих синтаксисах. Например, можно задать функцию потерь классификации и веса наблюдения. То, L
= loss(___,Name,Value
)loss
возвращает взвешенную потерю классификации с помощью заданной функции потерь.
Загрузите ionosphere
набор данных. Этот набор данных имеет 34 предиктора, и 351 бинарный ответ для радара возвращается, любой плохо ('b'
) или хороший ('g'
).
load ionosphere
Разделите набор данных в наборы обучающих данных и наборы тестов. Задайте 15%-ю выборку затяжки для набора тестов.
rng('default') % For reproducibility Partition = cvpartition(Y,'Holdout',0.15); trainingInds = training(Partition); % Indices for the training set testInds = test(Partition); % Indices for the test set
Обучите бинарную модель классификации ядер использование набора обучающих данных.
Mdl = fitckernel(X(trainingInds,:),Y(trainingInds));
Оцените ошибку классификации наборов обучающих данных и ошибку классификации наборов тестов.
ceTrain = loss(Mdl,X(trainingInds,:),Y(trainingInds))
ceTrain = 0.0067
ceTest = loss(Mdl,X(testInds,:),Y(testInds))
ceTest = 0.1140
Загрузите ionosphere
набор данных. Этот набор данных имеет 34 предиктора, и 351 бинарный ответ для радара возвращается, любой плохо ('b'
) или хороший ('g'
).
load ionosphere
Разделите набор данных в наборы обучающих данных и наборы тестов. Задайте 15%-ю выборку затяжки для набора тестов.
rng('default') % For reproducibility Partition = cvpartition(Y,'Holdout',0.15); trainingInds = training(Partition); % Indices for the training set testInds = test(Partition); % Indices for the test set
Обучите бинарную модель классификации ядер использование набора обучающих данных.
Mdl = fitckernel(X(trainingInds,:),Y(trainingInds));
Создайте анонимную функцию, которая измеряет линейную потерю, то есть,
вес для наблюдения j, ответ j (-1 для отрицательного класса, и 1 в противном случае), и необработанная классификационная оценка наблюдения j.
linearloss = @(C,S,W,Cost)sum(-W.*sum(S.*C,2))/sum(W);
Пользовательские функции потерь должны быть написаны в конкретной форме. Для правил о записи пользовательской функции потерь смотрите 'LossFun'
аргумент пары "имя-значение".
Оцените потерю классификации наборов обучающих данных и потерю классификации наборов тестов с помощью линейной функции потерь.
ceTrain = loss(Mdl,X(trainingInds,:),Y(trainingInds),'LossFun',linearloss)
ceTrain = -1.0851
ceTest = loss(Mdl,X(testInds,:),Y(testInds),'LossFun',linearloss)
ceTest = -0.7821
Mdl
— Бинарная модель классификации ядерClassificationKernel
объект моделиБинарная модель классификации ядер в виде ClassificationKernel
объект модели. Можно создать ClassificationKernel
использование объекта модели fitckernel
.
Y
— Метки классаКласс помечает в виде категориального, символа или массива строк; логический или числовой вектор; или массив ячеек из символьных векторов.
Тип данных Y
должен совпасть с типом данных Mdl.ClassNames
. (Программное обеспечение обрабатывает строковые массивы как массивы ячеек из символьных векторов.)
Отличные классы в Y
должно быть подмножество Mdl.ClassNames
.
Если Y
символьный массив, затем каждый элемент должен соответствовать одной строке массива.
Длина Y
должно быть равно количеству наблюдений в X
или Tbl
.
Типы данных: categorical
| char
| string
| logical
| single
| double
| cell
Tbl
— Выборочные данныеВыборочные данные раньше обучали модель в виде таблицы. Каждая строка Tbl
соответствует одному наблюдению, и каждый столбец соответствует одному переменному предиктору. Опционально, Tbl
может содержать дополнительные столбцы для весов наблюдения и переменной отклика. Tbl
должен содержать все предикторы, используемые, чтобы обучить Mdl
. Многостолбцовые переменные и массивы ячеек кроме массивов ячеек из символьных векторов не позволены.
Если Tbl
содержит переменную отклика, используемую, чтобы обучить Mdl
, затем вы не должны задавать ResponseVarName
или Y
.
Если вы обучаете Mdl
использование выборочных данных, содержавшихся в таблице, затем входные данные для loss
должен также быть в таблице.
ResponseVarName
— Имя переменной откликаTbl
Имя переменной отклика в виде имени переменной в Tbl
. Если Tbl
содержит переменную отклика, используемую, чтобы обучить Mdl
, затем вы не должны задавать ResponseVarName
.
Если вы задаете ResponseVarName
, затем необходимо задать его как вектор символов или строковый скаляр. Например, если переменная отклика хранится как Tbl.Y
, затем задайте ResponseVarName
как 'Y'
. В противном случае программное обеспечение обрабатывает все столбцы Tbl
, включая Tbl.Y
, как предикторы.
Переменная отклика должна быть категориальным, символом или массивом строк; логический или числовой вектор; или массив ячеек из символьных векторов. Если переменная отклика является символьным массивом, то каждый элемент должен соответствовать одной строке массива.
Типы данных: char |
string
Задайте дополнительные разделенные запятой пары Name,Value
аргументы. Name
имя аргумента и Value
соответствующее значение. Name
должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN
.
L = loss(Mdl,X,Y,'LossFun','quadratic','Weights',weights)
возвращает взвешенную потерю классификации с помощью квадратичной функции потерь.'LossFun'
— Функция потерь'classiferror'
(значение по умолчанию) | 'binodeviance'
| 'exponential'
| 'hinge'
| 'logit'
| 'mincost'
| 'quadratic'
| указатель на функциюФункция потерь в виде разделенной запятой пары, состоящей из 'LossFun'
и встроенное имя функции потерь или указатель на функцию.
Эта таблица приводит доступные функции потерь. Задайте тот с помощью его соответствующего значения.
Значение | Описание |
---|---|
'binodeviance' | Биномиальное отклонение |
'classiferror' | Неправильно классифицированный уровень в десятичном числе |
'exponential' | Экспоненциальная потеря |
'hinge' | Потеря стержня |
'logit' | Логистическая потеря |
'mincost' | Минимальный ожидал стоимость misclassification (для классификационных оценок, которые являются апостериорными вероятностями), |
'quadratic' | Квадратичная потеря |
'mincost'
подходит для классификационных оценок, которые являются апостериорными вероятностями. Для моделей классификации ядер ученики логистической регрессии возвращают апостериорные вероятности как классификационные оценки по умолчанию, но ученики SVM не делают (см. predict
).
Чтобы задать пользовательскую функцию потерь, используйте обозначение указателя на функцию. Функция должна иметь эту форму:
lossvalue = lossfun
(C,S,W,Cost)
Выходной аргумент lossvalue
скаляр.
Вы задаете имя функции (lossfun
).
C
n
- K
логическая матрица со строками, указывающими на класс, которому принадлежит соответствующее наблюдение. n
количество наблюдений в Tbl
или X
, и K
количество отличных классов (numel(Mdl.ClassNames)
. Порядок следования столбцов соответствует порядку класса в Mdl.ClassNames
. Создайте C
установкой C(p,q) = 1
, если наблюдение p
находится в классе q
, для каждой строки. Установите все другие элементы строки p
к 0
.
S
n
- K
числовая матрица классификационных оценок. Порядок следования столбцов соответствует порядку класса в Mdl.ClassNames
S
матрица классификационных оценок, похожих на выход predict
.
W
n
- 1 числовой вектор из весов наблюдения.
Cost
K
- K
числовая матрица затрат misclassification. Например, Cost = ones(K) – eye(K)
задает стоимость 0
для правильной классификации и 1
для misclassification.
Пример: 'LossFun', @
lossfun
Типы данных: char |
string
| function_handle
'Weights'
— Веса наблюденияones(size(X,1),1)
(значение по умолчанию) | числовой вектор | имя переменной в Tbl
Веса наблюдения в виде разделенной запятой пары, состоящей из 'Weights'
и числовой вектор или имя переменной в Tbl
.
Если Weights
числовой вектор, затем размер Weights
должно быть равно количеству строк в X
или Tbl
.
Если Weights
имя переменной в Tbl
, необходимо задать Weights
как вектор символов или строковый скаляр. Например, если веса хранятся как Tbl.W
, затем задайте Weights
как 'W'
. В противном случае программное обеспечение обрабатывает все столбцы Tbl
, включая Tbl.W
, как предикторы.
Если вы предоставляете веса, loss
вычисляет взвешенную потерю классификации и нормирует веса, чтобы суммировать до значения априорной вероятности в соответствующем классе.
Типы данных: double |
single
| char
| string
L
— Потеря классификацииПотеря классификации, возвращенная в виде числа. Интерпретация L
зависит от Weights
и LossFun
.
Функции Classification loss измеряют прогнозирующую погрешность моделей классификации. Когда вы сравниваете тот же тип потери среди многих моделей, более низкая потеря указывает на лучшую прогнозную модель.
Предположим следующее:
L является средневзвешенной потерей классификации.
n является объемом выборки.
yj является наблюдаемой меткой класса. Программные коды это как –1 или 1, указывая на отрицательный или положительный класс (или первый или второй класс в ClassNames
свойство), соответственно.
f (Xj) является классификационной оценкой положительного класса для наблюдения (строка) j данных о предикторе X.
mj = yj f (Xj) является классификационной оценкой для классификации наблюдения j в класс, соответствующий yj. Положительные значения mj указывают на правильную классификацию и не способствуют очень средней потере. Отрицательные величины mj указывают на неправильную классификацию и значительно способствуют средней потере.
Весом для наблюдения j является wj. Программное обеспечение нормирует веса наблюдения так, чтобы они суммировали к соответствующей предшествующей вероятности класса. Программное обеспечение также нормирует априорные вероятности так, чтобы они суммировали к 1. Поэтому
Эта таблица описывает поддерживаемые функции потерь, которые можно задать при помощи 'LossFun'
аргумент значения имени.
Функция потерь | Значение LossFun | Уравнение |
---|---|---|
Биномиальное отклонение | 'binodeviance' | |
Экспоненциальная потеря | 'exponential' | |
Неправильно классифицированный уровень в десятичном числе | 'classiferror' | метка класса, соответствующая классу с максимальным счетом. I {·} является функцией индикатора. |
Потеря стержня | 'hinge' | |
Потеря логита | 'logit' | |
Минимальный ожидал стоимость misclassification | 'mincost' |
Программное обеспечение вычисляет взвешенную минимальную ожидаемую стоимость классификации с помощью этой процедуры для наблюдений j = 1..., n.
Взвешенное среднее минимального ожидало, что потеря стоимости misclassification Если вы используете матрицу стоимости по умолчанию (чье значение элемента 0 для правильной классификации и 1 для неправильной классификации), то |
Квадратичная потеря | 'quadratic' |
Этот рисунок сравнивает функции потерь (кроме 'mincost'
) по счету m для одного наблюдения. Некоторые функции нормированы, чтобы пройти через точку (0,1).
Указания и ограничения по применению:
loss
не поддерживает высокий table
данные.
Для получения дополнительной информации см. Раздел "Высокие массивы".
У вас есть модифицированная версия этого примера. Вы хотите открыть этот пример со своими редактированиями?
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.