kfoldLoss

Потеря классификации для наблюдений, не используемых в обучении

Описание

пример

L = kfoldLoss(CVMdl) возвращает перекрестные подтвержденные потери классификации, полученные перекрестным подтвержденным, двоичным файлом, линейной моделью CVMdl классификации. Таким образом, для каждого сгиба, kfoldLoss оценивает потерю классификации для наблюдений, что она протягивает, когда она обучает использование всех других наблюдений.

L содержит потерю классификации для каждой силы регуляризации в линейных моделях классификации, которые составляют CVMdl.

пример

L = kfoldLoss(CVMdl,Name,Value) дополнительные опции использования заданы одним или несколькими Name,Value парные аргументы. Например, укажите который сгибы использовать для вычисления потерь или задать функцию потерь классификации.

Входные параметры

развернуть все

Перекрестный подтвержденный, двоичный файл, линейная модель классификации в виде ClassificationPartitionedLinear объект модели. Можно создать ClassificationPartitionedLinear использование модели fitclinear и определение любой из перекрестной проверки, аргументов пары "имя-значение", например, CrossVal.

Чтобы получить оценки, kfoldLoss применяется, те же данные раньше перекрестный подтверждали линейную модель классификации (X и Y).

Аргументы в виде пар имя-значение

Задайте дополнительные разделенные запятой пары Name,Value аргументы. Name имя аргумента и Value соответствующее значение. Name должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN.

Сверните индексы, чтобы использовать для предсказания классификационной оценки в виде разделенной запятой пары, состоящей из 'Folds' и числовой вектор из положительных целых чисел. Элементы Folds должен лежать в диапазоне от 1 через CVMdl.KFold.

Пример: 'Folds',[1 4 10]

Типы данных: single | double

Функция потерь в виде разделенной запятой пары, состоящей из 'LossFun' и встроенное имя функции потерь или указатель на функцию.

  • В следующей таблице перечислены доступные функции потерь. Задайте тот с помощью его соответствующего вектора символов или строкового скаляра.

    ЗначениеОписание
    'binodeviance'Биномиальное отклонение
    'classiferror'Неправильно классифицированный уровень в десятичном числе
    'exponential'Экспоненциальная потеря
    'hinge'Потеря стержня
    'logit'Логистическая потеря
    'mincost'Минимальный ожидал стоимость misclassification (для классификационных оценок, которые являются апостериорными вероятностями),
    'quadratic'Квадратичная потеря

    'mincost' подходит для классификационных оценок, которые являются апостериорными вероятностями. Для линейных моделей классификации ученики логистической регрессии возвращают апостериорные вероятности как классификационные оценки по умолчанию, но ученики SVM не делают (см. predict).

  • Задайте свою собственную функцию с помощью обозначения указателя на функцию.

    Позвольте n будьте количеством наблюдений в X и K будьте количеством отличных классов (numel(Mdl.ClassNames), Mdl входная модель). Ваша функция должна иметь эту подпись

    lossvalue = lossfun(C,S,W,Cost)
    где:

    • Выходной аргумент lossvalue скаляр.

    • Вы выбираете имя функции (lossfun).

    • C n- K логическая матрица со строками, указывающими, которые классифицируют соответствующее наблюдение, принадлежит. Порядок следования столбцов соответствует порядку класса в Mdl.ClassNames.

      Создайте C установкой C(p,q) = 1 если наблюдение p находится в классе q, для каждой строки. Установите все другие элементы строки p к 0.

    • S n- K числовая матрица классификационных оценок. Порядок следования столбцов соответствует порядку класса в Mdl.ClassNamesS матрица классификационных оценок, похожих на выход predict.

    • W n- 1 числовой вектор из весов наблюдения. Если вы передаете W, программное обеспечение нормирует их, чтобы суммировать к 1.

    • Cost K-by-K числовая матрица затрат misclassification. Например, Cost = ones(K) - eye(K) задает стоимость 0 для правильной классификации и 1 для misclassification.

    Задайте свое использование функции 'LossFun', @lossfun.

Типы данных: char | string | function_handle

Уровень агрегации потерь в виде разделенной запятой пары, состоящей из 'Mode' и 'average' или 'individual'.

ЗначениеОписание
'average'Возвращает потери, усредненные по всем сгибам
'individual'Возвращает потери для каждого сгиба

Пример: 'Mode','individual'

Выходные аргументы

развернуть все

Перекрестные подтвержденные потери классификации, возвращенные в виде числа, вектора или матрицы. Интерпретация L зависит от LossFun.

Позвольте R будьте количеством сильных мест регуляризации, перекрестные подтвержденные модели (сохраненный в numel(CVMdl.Trained{1}.Lambda)) и F будьте количеством сгибов (сохраненный в CVMdl.KFold).

  • Если Mode 'average', затем L 1 R вектор. L (j) средняя потеря классификации по всем сгибам перекрестной подтвержденной модели, которая использует силу регуляризации j.

  • В противном случае, L F- R матрица. L (iJ) потеря классификации для сгиба i из перекрестной подтвержденной модели, которая использует силу регуляризации j.

Оценить L, kfoldLoss использует данные, которые создали CVMdl (см. X и Y).

Примеры

развернуть все

Загрузите набор данных NLP.

load nlpdata

X разреженная матрица данных о предикторе и Y категориальный вектор из меток класса. В данных существует больше чем два класса.

Модели должны идентифицировать, являются ли подсчеты слов в веб-странице из документации Statistics and Machine Learning Toolbox™. Так, идентифицируйте метки, которые соответствуют веб-страницам документации Statistics and Machine Learning Toolbox™.

Ystats = Y == 'stats';

Перекрестный подтвердите двоичный файл, линейная модель классификации, которая может идентифицировать, являются ли подсчеты слов в веб-странице документации из документации Statistics and Machine Learning Toolbox™.

rng(1); % For reproducibility 
CVMdl = fitclinear(X,Ystats,'CrossVal','on');

CVMdl ClassificationPartitionedLinear модель. По умолчанию программное обеспечение реализует 10-кратную перекрестную проверку. Можно изменить количество сгибов с помощью 'KFold' аргумент пары "имя-значение".

Оцените среднее значение коэффициентов ошибок классификации из сгиба.

ce = kfoldLoss(CVMdl)
ce = 7.6017e-04

В качестве альтернативы можно получить коэффициенты ошибок классификации на сгиб путем определения пары "имя-значение" 'Mode','individual' в kfoldLoss.

Загрузите набор данных NLP. Предварительно обработайте данные как по Оценочной Ошибке Классификации Перекрестных проверок k-сгиба и транспонируйте данные о предикторе.

load nlpdata
Ystats = Y == 'stats';
X = X';

Перекрестный подтвердите двоичный файл, линейная модель классификации использование 5-кратной перекрестной проверки. Оптимизируйте использование целевой функции SpaRSA. Укажите, что наблюдения предиктора соответствуют столбцам.

rng(1); % For reproducibility 
CVMdl = fitclinear(X,Ystats,'Solver','sparsa','KFold',5,...
    'ObservationsIn','columns');
CMdl = CVMdl.Trained{1};

CVMdl ClassificationPartitionedLinear модель. Это содержит свойство Trained, который является массивом ячеек 5 на 1, содержащим ClassificationLinear модели, что программное обеспечение обучило использование набора обучающих данных каждого сгиба.

Создайте анонимную функцию, которая измеряет линейную потерю, то есть,

L=j-wjyjfjjwj.

wj вес для наблюдения j, y_j является ответом j (-1 для отрицательного класса, и 1 в противном случае), и f_j является необработанной классификационной оценкой наблюдения j. Пользовательские функции потерь должны быть написаны в конкретной форме. Для правил о записи пользовательской функции потерь смотрите LossFun аргумент пары "имя-значение". Поскольку функция не использует классификацию, стоят, используют ~ иметь kfoldLoss проигнорируйте его положение.

linearloss = @(C,S,W,~)sum(-W.*sum(S.*C,2))/sum(W);

Оцените среднее значение перекрестная подтвержденная потеря классификации с помощью линейной функции потерь. Кроме того, получите потерю для каждого сгиба.

ce = kfoldLoss(CVMdl,'LossFun',linearloss)
ce = -8.0982
ceFold = kfoldLoss(CVMdl,'LossFun',linearloss,'Mode','individual')
ceFold = 5×1

   -8.3165
   -8.7633
   -7.4342
   -8.0423
   -7.9347

Чтобы определить хорошую силу штрафа лассо для линейной модели классификации, которая использует ученика логистической регрессии, сравните демонстрационные тестом коэффициенты ошибок классификации.

Загрузите набор данных NLP. Предварительно обработайте данные, когда в Задают Пользовательскую Потерю Классификации.

load nlpdata
Ystats = Y == 'stats';
X = X';

Создайте набор 11 логарифмически распределенных сильных мест регуляризации от 10-6 через 100.5.

Lambda = logspace(-6,-0.5,11);

Перекрестный подтвердите двоичный файл, линейные модели классификации с помощью 5-кратной перекрестной проверки и того использования каждые из сильных мест регуляризации. Оптимизируйте использование целевой функции SpaRSA. Понизьте допуск на градиент целевой функции к 1e-8.

rng(10); % For reproducibility
CVMdl = fitclinear(X,Ystats,'ObservationsIn','columns',...
    'KFold',5,'Learner','logistic','Solver','sparsa',...
    'Regularization','lasso','Lambda',Lambda,'GradientTolerance',1e-8)
CVMdl = 
  ClassificationPartitionedLinear
    CrossValidatedModel: 'Linear'
           ResponseName: 'Y'
        NumObservations: 31572
                  KFold: 5
              Partition: [1x1 cvpartition]
             ClassNames: [0 1]
         ScoreTransform: 'none'


  Properties, Methods

Извлеките обученную линейную модель классификации.

Mdl1 = CVMdl.Trained{1}
Mdl1 = 
  ClassificationLinear
      ResponseName: 'Y'
        ClassNames: [0 1]
    ScoreTransform: 'logit'
              Beta: [34023x11 double]
              Bias: [1x11 double]
            Lambda: [1x11 double]
           Learner: 'logistic'


  Properties, Methods

Mdl1 ClassificationLinear объект модели. Поскольку Lambda последовательность сильных мест регуляризации, можно думать о Mdl как 11 моделей, один для каждой силы регуляризации в Lambda.

Оцените перекрестную подтвержденную ошибку классификации.

ce = kfoldLoss(CVMdl);

Поскольку существует 11 сильных мест регуляризации, ce вектор 1 на 11 из коэффициентов ошибок классификации.

Более высокие значения Lambda приведите к разреженности переменного предиктора, которая является хорошим качеством классификатора. Для каждой силы регуляризации обучите линейную модель классификации использование целого набора данных и тех же опций как тогда, когда вы перекрестный подтвержденный модели. Определите количество ненулевых коэффициентов на модель.

Mdl = fitclinear(X,Ystats,'ObservationsIn','columns',...
    'Learner','logistic','Solver','sparsa','Regularization','lasso',...
    'Lambda',Lambda,'GradientTolerance',1e-8);
numNZCoeff = sum(Mdl.Beta~=0);

На том же рисунке постройте перекрестное подтвержденное, коэффициенты ошибок классификации и частоту ненулевых коэффициентов для каждой силы регуляризации. Постройте все переменные на логарифмической шкале.

figure;
[h,hL1,hL2] = plotyy(log10(Lambda),log10(ce),...
    log10(Lambda),log10(numNZCoeff)); 
hL1.Marker = 'o';
hL2.Marker = 'o';
ylabel(h(1),'log_{10} classification error')
ylabel(h(2),'log_{10} nonzero-coefficient frequency')
xlabel('log_{10} Lambda')
title('Test-Sample Statistics')
hold off

Figure contains 2 axes. Axes 1 with title Test-Sample Statistics contains an object of type line. Axes 2 contains an object of type line.

Выберите индексы силы регуляризации, которая балансирует разреженность переменного предиктора и низкую ошибку классификации. В этом случае, значение между 10-4 к 10-1 должен быть достаточным.

idxFinal = 7;

Выберите модель из Mdl с выбранной силой регуляризации.

MdlFinal = selectModels(Mdl,idxFinal);

MdlFinal ClassificationLinear модель, содержащая одну силу регуляризации. Чтобы оценить метки для новых наблюдений, передайте MdlFinal и новые данные к predict.

Больше о

развернуть все

Введенный в R2016a
Для просмотра документации необходимо авторизоваться на сайте