RegressionBaggedEnsemble

Пакет: classreg.learning.regr
Суперклассы: RegressionEnsemble

Ансамбль регрессии, выращенный путем передискретизации

Описание

RegressionBaggedEnsemble комбинирует набор обученных слабых моделей ученика и данных, на которых были обучены эти ученики. Это может предсказать ответ ансамбля для новых данных путем агрегации предсказаний от его слабых учеников.

Конструкция

Создайте сложенное в мешок использование объекта ансамбля регрессии fitrensemble. Установите аргумент пары "имя-значение" 'Method' из fitrensemble к 'Bag' использовать агрегацию начальной загрузки (укладывание в мешки, например, случайный лес).

Свойства

BinEdges

Границы интервала для числовых предикторов в виде массива ячеек p числовые векторы, где p является количеством предикторов. Каждый вектор включает границы интервала для числового предиктора. Элемент в массиве ячеек для категориального предиктора пуст, потому что программное обеспечение не делает интервала категориальные предикторы.

Числовые предикторы интервалов программного обеспечения, только если вы задаете 'NumBins' аргумент значения имени как положительный целочисленный скаляр, когда обучение модель с древовидными учениками. BinEdges свойство пусто если 'NumBins' значение пусто (значение по умолчанию).

Можно воспроизвести сгруппированные данные о предикторе Xbinned при помощи BinEdges свойство обученной модели mdl.

X = mdl.X; % Predictor data
Xbinned = zeros(size(X));
edges = mdl.BinEdges;
% Find indices of binned predictors.
idxNumeric = find(~cellfun(@isempty,edges));
if iscolumn(idxNumeric)
    idxNumeric = idxNumeric';
end
for j = idxNumeric 
    x = X(:,j);
    % Convert x to array if x is a table.
    if istable(x) 
        x = table2array(x);
    end
    % Group x into bins by using the discretize function.
    xbinned = discretize(x,[-inf; edges{j}; inf]); 
    Xbinned(:,j) = xbinned;
end
Xbinned содержит индексы интервала, в пределах от 1 к количеству интервалов, для числовых предикторов. Xbinned значения 0 для категориальных предикторов. Если X содержит NaNs, затем соответствующий Xbinned значениями является NaNs.

CategoricalPredictors

Категориальные индексы предиктора в виде вектора из положительных целых чисел. CategoricalPredictors содержит значения индекса, соответствующие столбцам данных о предикторе, которые содержат категориальные предикторы. Если ни один из предикторов не является категориальным, то это свойство пусто ([]).

CombineWeights

Вектор символов, описывающий, как ансамбль комбинирует предсказания ученика.

ExpandedPredictorNames

Расширенные имена предиктора, сохраненные как массив ячеек из символьных векторов.

Если кодирование использования модели для категориальных переменных, то ExpandedPredictorNames включает имена, которые описывают расширенные переменные. В противном случае, ExpandedPredictorNames совпадает с PredictorNames.

FitInfo

Числовой массив подходящей информации. FitInfoDescription свойство описывает содержимое этого массива.

FitInfoDescription

Вектор символов, описывающий значение FitInfo массив.

FResample

Числовой скаляр между 0 и 1. FResample часть обучающих данных fitrensemble передискретизируемый наугад для каждого слабого ученика при построении ансамбля.

HyperparameterOptimizationResults

Описание оптимизации перекрестной проверки гиперпараметров, сохраненных как BayesianOptimization возразите или таблица гиперпараметров и присваиваемых значений. Непустой, когда OptimizeHyperparameters пара "имя-значение" непуста при создании. Значение зависит от установки HyperparameterOptimizationOptions пара "имя-значение" при создании:

  • 'bayesopt' (значение по умолчанию) — Объект класса BayesianOptimization

  • 'gridsearch' или 'randomsearch' — Таблица гиперпараметров используемые, наблюдаемые значения целевой функции (потеря перекрестной проверки), и ранг наблюдений от самого низкого (лучше всего) к (худшему) самому высокому

LearnerNames

Массив ячеек из символьных векторов с именами слабых учеников в ансамбле. Имя каждого ученика появляется только однажды. Например, если у вас есть ансамбль 100 деревьев, LearnerNames {'Tree'}.

Method

Вектор символов с именем алгоритма fitrensemble используемый для обучения ансамбль.

ModelParameters

Параметры используются в учебном ens.

NumObservations

Числовой скаляр, содержащий количество наблюдений в обучающих данных.

NumTrained

Количество обученных учеников в ансамбле, положительной скалярной величине.

PredictorNames

Массив ячеек имен для переменных предикторов, в порядке, в котором они появляются в X.

ReasonForTermination

Вектор символов, описывающий причину fitrensemble остановленные добавляющие слабые ученики ансамблю.

Regularization

Структура, содержащая результат regularize метод. Используйте Regularization с shrink понизить ошибку перезамены и уменьшить ансамбль.

Replace

Булев флаг, указывающий, были ли обучающие данные для слабых учеников в этом ансамбле произведены с заменой. Replace true для выборки с заменой, false в противном случае.

ResponseName

Вектор символов с именем переменной отклика Y.

ResponseTransform

Указатель на функцию для преобразования баллов или вектора символов, представляющего встроенную функцию преобразования. 'none' средние значения никакое преобразование; эквивалентно, 'none' средние значения @(x)x.

Добавьте или измените ResponseTransform функция с помощью записи через точку:

ens.ResponseTransform = @function

Trained

Обученные ученики, массив ячеек компактных моделей регрессии.

TrainedWeights

Числовой вектор из весов ансамбль присваивает своим ученикам. Ансамбль вычисляет предсказанный ответ путем агрегации взвешенных предсказаний от его учеников.

UseObsForLearner

Логическая матрица размера N- NumTrained, где N количество строк (наблюдения) в обучающих данных X, и NumTrained количество обученных слабых учеников. UseObsForLearner(I,J) true если наблюдение I использовался для учебного ученика J, и false в противном случае.

W

Масштабированный weights, вектор с длиной n, количество строк в X. Сумма элементов W 1.

X

Матрица или таблица значений предиктора, которые обучили ансамбль. Каждый столбец X представляет одну переменную, и каждая строка представляет одно наблюдение.

Y

Числовой вектор-столбец с одинаковым числом строк как X это обучило ансамбль. Каждая запись в Y ответ на данные в соответствующей строке X.

Функции объекта

compactСоздайте компактный ансамбль регрессии
crossvalКрест подтверждает ансамбль
cvshrinkКрест подтверждает уменьшение (сокращение) ансамбль
limeЛокальные поддающиеся толкованию объяснения модели агностические (LIME)
lossОшибка регрессии
oobLossОшибка регрессии из сумки
oobPermutedPredictorImportanceВажность предиктора оценивает сочетанием наблюдений предиктора из сумки для случайного леса деревьев регрессии
oobPredictПредскажите ответ из сумки ансамбля
partialDependenceВычислите частичную зависимость
plotPartialDependenceСоздайте графики отдельного условного ожидания (ICE) и частичный график зависимости (PDP)
predictПредскажите ансамбль использования ответов моделей регрессии
predictorImportanceОценки важности предиктора для ансамбля регрессии
regularizeНайдите, что веса минимизируют ошибку перезамены плюс термин штрафа
removeLearnersУдалите члены компактного ансамбля регрессии
resubLossОшибка регрессии перезаменой
resubPredictПредскажите ответ ансамбля перезаменой
resumeВозобновите учебный ансамбль
shapleyШепли оценивает
shrinkСократите ансамбль

Примеры

свернуть все

Загрузите carsmall набор данных. Рассмотрите модель, которая объясняет экономию топлива автомобиля (MPG) использование его веса (Weight) и количество цилиндров (Cylinders).

load carsmall
X = [Weight Cylinders];
Y = MPG;

Обучите уволенный ансамбль 100 деревьев регрессии с помощью всех измерений.

Mdl = fitrensemble(X,Y,'Method','bag')
Mdl = 
  RegressionBaggedEnsemble
             ResponseName: 'Y'
    CategoricalPredictors: []
        ResponseTransform: 'none'
          NumObservations: 94
               NumTrained: 100
                   Method: 'Bag'
             LearnerNames: {'Tree'}
     ReasonForTermination: 'Terminated normally after completing the requested number of training cycles.'
                  FitInfo: []
       FitInfoDescription: 'None'
           Regularization: []
                FResample: 1
                  Replace: 1
         UseObsForLearner: [94x100 logical]


  Properties, Methods

Mdl RegressionBaggedEnsemble объект модели.

Mdl.Trained свойство, которое хранит 100 1 вектор ячейки из обученных, компактных деревьев регрессии (CompactRegressionTree объекты модели), которые составляют ансамбль.

Постройте график первого обученного дерева регрессии.

view(Mdl.Trained{1},'Mode','graph')

Figure Regression tree viewer contains an axes and other objects of type uimenu, uicontrol. The axes contains 24 objects of type line, text.

По умолчанию, fitrensemble выращивает глубокие деревья для мешков деревьев.

Оцените среднеквадратическую ошибку (MSE) в выборке.

L = resubLoss(Mdl)
L = 12.4048

Советы

Для уволенного ансамбля деревьев регрессии, Trained свойство ens хранит вектор ячейки из ens.NumTrained CompactRegressionTree объекты модели. Для текстового или графического дисплея древовидного t в векторе ячейки войти

view(ens.Trained{t})

Расширенные возможности

Смотрите также

| |

Введенный в R2011a
Для просмотра документации необходимо авторизоваться на сайте