Выбор признаков с помощью анализа компонента окружения для регрессии
выполняет выбор признаков для регрессии с дополнительными опциями, заданными одним или несколькими аргументами пары "имя-значение".mdl = fsrnca(X,Y,Name,Value)
Сгенерируйте игрушечные данные, где переменная отклика зависит от 3-х, 9-х, и 15-х предикторов.
rng(0,'twister'); % For reproducibility N = 100; X = rand(N,20); y = 1 + X(:,3)*5 + sin(X(:,9)./X(:,15) + 0.25*randn(N,1));
Подбирайте аналитическую модель компонента окружения для регрессии.
mdl = fsrnca(X,y,'Verbose',1,'Lambda',0.5/N);
o Solver = LBFGS, HessianHistorySize = 15, LineSearchMethod = weakwolfe
|====================================================================================================|
| ITER | FUN VALUE | NORM GRAD | NORM STEP | CURV | GAMMA | ALPHA | ACCEPT |
|====================================================================================================|
| 0 | 1.636932e+00 | 3.688e-01 | 0.000e+00 | | 1.627e+00 | 0.000e+00 | YES |
| 1 | 8.304833e-01 | 1.083e-01 | 2.449e+00 | OK | 9.194e+00 | 4.000e+00 | YES |
| 2 | 7.548105e-01 | 1.341e-02 | 1.164e+00 | OK | 1.095e+01 | 1.000e+00 | YES |
| 3 | 7.346997e-01 | 9.752e-03 | 6.383e-01 | OK | 2.979e+01 | 1.000e+00 | YES |
| 4 | 7.053407e-01 | 1.605e-02 | 1.712e+00 | OK | 5.809e+01 | 1.000e+00 | YES |
| 5 | 6.970502e-01 | 9.106e-03 | 8.818e-01 | OK | 6.223e+01 | 1.000e+00 | YES |
| 6 | 6.952347e-01 | 5.522e-03 | 6.382e-01 | OK | 3.280e+01 | 1.000e+00 | YES |
| 7 | 6.946302e-01 | 9.102e-04 | 1.952e-01 | OK | 3.380e+01 | 1.000e+00 | YES |
| 8 | 6.945037e-01 | 6.557e-04 | 9.942e-02 | OK | 8.490e+01 | 1.000e+00 | YES |
| 9 | 6.943908e-01 | 1.997e-04 | 1.756e-01 | OK | 1.124e+02 | 1.000e+00 | YES |
| 10 | 6.943785e-01 | 3.478e-04 | 7.755e-02 | OK | 7.621e+01 | 1.000e+00 | YES |
| 11 | 6.943728e-01 | 1.428e-04 | 3.416e-02 | OK | 3.649e+01 | 1.000e+00 | YES |
| 12 | 6.943711e-01 | 1.128e-04 | 1.231e-02 | OK | 6.092e+01 | 1.000e+00 | YES |
| 13 | 6.943688e-01 | 1.066e-04 | 2.326e-02 | OK | 9.319e+01 | 1.000e+00 | YES |
| 14 | 6.943655e-01 | 9.324e-05 | 4.399e-02 | OK | 1.810e+02 | 1.000e+00 | YES |
| 15 | 6.943603e-01 | 1.206e-04 | 8.823e-02 | OK | 4.609e+02 | 1.000e+00 | YES |
| 16 | 6.943582e-01 | 1.701e-04 | 6.669e-02 | OK | 8.425e+01 | 5.000e-01 | YES |
| 17 | 6.943552e-01 | 5.160e-05 | 6.473e-02 | OK | 8.832e+01 | 1.000e+00 | YES |
| 18 | 6.943546e-01 | 2.477e-05 | 1.215e-02 | OK | 7.925e+01 | 1.000e+00 | YES |
| 19 | 6.943546e-01 | 1.077e-05 | 6.086e-03 | OK | 1.378e+02 | 1.000e+00 | YES |
|====================================================================================================|
| ITER | FUN VALUE | NORM GRAD | NORM STEP | CURV | GAMMA | ALPHA | ACCEPT |
|====================================================================================================|
| 20 | 6.943545e-01 | 2.260e-05 | 4.071e-03 | OK | 5.856e+01 | 1.000e+00 | YES |
| 21 | 6.943545e-01 | 4.250e-06 | 1.109e-03 | OK | 2.964e+01 | 1.000e+00 | YES |
| 22 | 6.943545e-01 | 1.916e-06 | 8.356e-04 | OK | 8.649e+01 | 1.000e+00 | YES |
| 23 | 6.943545e-01 | 1.083e-06 | 5.270e-04 | OK | 1.168e+02 | 1.000e+00 | YES |
| 24 | 6.943545e-01 | 1.791e-06 | 2.673e-04 | OK | 4.016e+01 | 1.000e+00 | YES |
| 25 | 6.943545e-01 | 2.596e-07 | 1.111e-04 | OK | 3.154e+01 | 1.000e+00 | YES |
Infinity norm of the final gradient = 2.596e-07
Two norm of the final step = 1.111e-04, TolX = 1.000e-06
Relative infinity norm of the final gradient = 2.596e-07, TolFun = 1.000e-06
EXIT: Local minimum found.
Постройте выбранные функции. Веса несоответствующих функций должны быть близко к нулю.
figure() plot(mdl.FeatureWeights,'ro') grid on xlabel('Feature index') ylabel('Feature weight')

fsrnca правильно обнаруживает соответствующие предикторы для этого ответа.
Загрузите выборочные данные.
load robotarm.matrobotarm (pumadyn32nm) набор данных создается с помощью средства моделирования манипулятора с 7 168 учебными наблюдениями и 1 024 тестовыми наблюдениями с 32 функциями [1] [2]. Это - предварительно обработанная версия исходного набора данных. Данные предварительно обрабатываются путем вычитания от подгонки линейной регрессии, сопровождаемой нормализацией всех функций к модульному отклонению.
Выполните выбор признаков анализа компонента окружения (NCA) для регрессии со значением по умолчанию (параметр регуляризации) значение.
nca = fsrnca(Xtrain,ytrain,'FitMethod','exact', ... 'Solver','lbfgs');
Постройте выбранные значения.
figure plot(nca.FeatureWeights,'ro') xlabel('Feature index') ylabel('Feature weight') grid on

Больше чем половина весов функции является ненулевой. Вычислите потерю с помощью набора тестов в качестве меры эффективности при помощи выбранных функций.
L = loss(nca,Xtest,ytest)
L = 0.0837
Попытайтесь улучшать производительность. Настройте параметр регуляризации для выбора признаков с помощью пятикратной перекрестной проверки. Настройка средние значения, находящие значение, которое производит минимальную потерю регрессии. Настроиться использование перекрестной проверки:
1. Разделите данные в пять сгибов. Для каждого сгиба, cvpartition присвоения, 4/5-е из данных как набор обучающих данных и 1/5-е из данных как набор тестов.
rng(1) % For reproducibility n = length(ytrain); cvp = cvpartition(length(ytrain),'kfold',5); numvalidsets = cvp.NumTestSets;
Присвойте значения для поиска. Умножение значений отклика константой увеличения термин функции потерь на коэффициент константы. Поэтому включая std(ytrain) включите значения балансируют функцию потерь по умолчанию ('mad', означайте абсолютное отклонение), термин и срок регуляризации в целевой функции. В этом примере, std(ytrain) фактором является тот, потому что загруженные выборочные данные являются предварительно обработанной версией исходного набора данных.
lambdavals = linspace(0,50,20)*std(ytrain)/n;
Создайте массив, чтобы сохранить значения потерь.
lossvals = zeros(length(lambdavals),numvalidsets);
2. Обучите модель NCA каждому значение, с помощью набора обучающих данных в каждом сгибе.
3. Вычислите потерю регрессии для соответствующего набора тестов в сгибе с помощью модели NCA. Запишите значение потерь.
4. Повторите это для каждого значение и каждый сгиб.
for i = 1:length(lambdavals) for k = 1:numvalidsets X = Xtrain(cvp.training(k),:); y = ytrain(cvp.training(k),:); Xvalid = Xtrain(cvp.test(k),:); yvalid = ytrain(cvp.test(k),:); nca = fsrnca(X,y,'FitMethod','exact', ... 'Solver','minibatch-lbfgs','Lambda',lambdavals(i), ... 'GradientTolerance',1e-4,'IterationLimit',30); lossvals(i,k) = loss(nca,Xvalid,yvalid,'LossFunction','mse'); end end
Вычислите среднюю потерю, полученную из сгибов для каждого значение.
meanloss = mean(lossvals,2);
Постройте среднюю потерю по сравнению с значения.
figure plot(lambdavals,meanloss,'ro-') xlabel('Lambda') ylabel('Loss (MSE)') grid on

Найдите значение, которое дает значение с минимальными потерями.
[~,idx] = min(meanloss)
idx = 17
bestlambda = lambdavals(idx)
bestlambda = 0.0059
bestloss = meanloss(idx)
bestloss = 0.0590
Подбирайте модель выбора признаков NCA для регрессии с помощью лучшего значение.
nca = fsrnca(Xtrain,ytrain,'FitMethod','exact', ... 'Solver','lbfgs','Lambda',bestlambda);
Постройте выбранные функции.
figure plot(nca.FeatureWeights,'ro') xlabel('Feature Index') ylabel('Feature Weight') grid on

Большинство весов функции является нулем. fsrnca идентифицирует четыре самых соответствующих функции.
Вычислите потерю для набора тестов.
L = loss(nca,Xtest,ytest)
L = 0.0571
Настройка параметра регуляризации, , устраненный больше несоответствующих функций и улучшал производительность.
Этот пример использует данные о Морском ушке [3][4] от Репозитория Машинного обучения UCI [5]. Загрузите данные и сохраните их в вашей текущей папке с именем 'abalone.data'.
Храните данные в таблицу. Отобразите первые семь строк.
tbl = readtable('abalone.data','Filetype','text','ReadVariableNames',false); tbl.Properties.VariableNames = {'Sex','Length','Diameter','Height', ... 'WWeight','SWeight','VWeight','ShWeight','NoShellRings'}; tbl(1:7,:)
ans=7×9 table
Sex Length Diameter Height WWeight SWeight VWeight ShWeight NoShellRings
_____ ______ ________ ______ _______ _______ _______ ________ ____________
{'M'} 0.455 0.365 0.095 0.514 0.2245 0.101 0.15 15
{'M'} 0.35 0.265 0.09 0.2255 0.0995 0.0485 0.07 7
{'F'} 0.53 0.42 0.135 0.677 0.2565 0.1415 0.21 9
{'M'} 0.44 0.365 0.125 0.516 0.2155 0.114 0.155 10
{'I'} 0.33 0.255 0.08 0.205 0.0895 0.0395 0.055 7
{'I'} 0.425 0.3 0.095 0.3515 0.141 0.0775 0.12 8
{'F'} 0.53 0.415 0.15 0.7775 0.237 0.1415 0.33 20
Набор данных имеет 4 177 наблюдений. Цель состоит в том, чтобы предсказать возраст морского ушка от восьми физических измерений. Последняя переменная, количество звонков интерпретатора, показывает возраст морского ушка. Первый предиктор является категориальной переменной. Последняя переменная в таблице является переменной отклика.
Подготовьте переменные прогноза и переменные отклика к fsrnca. Последний столбец tbl содержит количество звонков интерпретатора, которое является переменной отклика. Первый переменный предиктор, пол, является категориальным. Необходимо создать фиктивные переменные.
y = table2array(tbl(:,end)); X(:,1:3) = dummyvar(categorical(tbl.Sex)); X = [X,table2array(tbl(:,2:end-1))];
Используйте четырехкратную перекрестную проверку, чтобы настроить параметр регуляризации в модели NCA. Первый раздел данные в четыре сгиба.
rng('default') % For reproducibility n = length(y); cvp = cvpartition(n,'kfold',4); numtestsets = cvp.NumTestSets;
cvpartition делит данные на четыре раздела (сгибы). В каждом сгибе, о трех четвертях данных присвоен как набор обучающих данных, и одна четверть присвоена как набор тестов.
Сгенерируйте разнообразие (параметр регуляризации) значения для того, чтобы подбирать модель, чтобы определить лучшее значение. Создайте вектор, чтобы собрать значения потерь из каждой подгонки.
lambdavals = linspace(0,25,20)*std(y)/n; lossvals = zeros(length(lambdavals),numtestsets);
Строки lossvals соответствует значения и столбцы соответствуют сгибам.
Подбирайте модель NCA для регрессии с помощью fsrnca к данным из каждого сгиба с помощью каждого значение. Вычислите потерю для каждой модели с помощью тестовых данных от каждого сгиба.
for i = 1:length(lambdavals) for k = 1:numtestsets Xtrain = X(cvp.training(k),:); ytrain = y(cvp.training(k),:); Xtest = X(cvp.test(k),:); ytest = y(cvp.test(k),:); nca = fsrnca(Xtrain,ytrain,'FitMethod','exact', ... 'Solver','lbfgs','Lambda',lambdavals(i),'Standardize',true); lossvals(i,k) = loss(nca,Xtest,ytest,'LossFunction','mse'); end end
Вычислите среднюю потерю для сгибов, то есть, вычислите среднее значение во втором измерении lossvals.
meanloss = mean(lossvals,2);
Постройте значения по сравнению со средней потерей от четырех сгибов.
figure plot(lambdavals,meanloss,'ro-') xlabel('Lambda') ylabel('Loss (MSE)') grid on

Найдите значение, которое минимизирует среднюю потерю.
[~,idx] = min(meanloss); bestlambda = lambdavals(idx)
bestlambda = 0.0071
Вычислите лучшее значение потерь.
bestloss = meanloss(idx)
bestloss = 4.7799
Подбирайте модель NCA на всех данных с помощью лучшего значение.
nca = fsrnca(X,y,'FitMethod','exact','Solver','lbfgs', ... 'Verbose',1,'Lambda',bestlambda,'Standardize',true);
o Solver = LBFGS, HessianHistorySize = 15, LineSearchMethod = weakwolfe
|====================================================================================================|
| ITER | FUN VALUE | NORM GRAD | NORM STEP | CURV | GAMMA | ALPHA | ACCEPT |
|====================================================================================================|
| 0 | 2.469168e+00 | 1.266e-01 | 0.000e+00 | | 4.741e+00 | 0.000e+00 | YES |
| 1 | 2.375166e+00 | 8.265e-02 | 7.268e-01 | OK | 1.054e+01 | 1.000e+00 | YES |
| 2 | 2.293528e+00 | 2.067e-02 | 2.034e+00 | OK | 1.569e+01 | 1.000e+00 | YES |
| 3 | 2.286703e+00 | 1.031e-02 | 3.158e-01 | OK | 2.213e+01 | 1.000e+00 | YES |
| 4 | 2.279928e+00 | 2.023e-02 | 9.374e-01 | OK | 1.953e+01 | 1.000e+00 | YES |
| 5 | 2.276258e+00 | 6.884e-03 | 2.497e-01 | OK | 1.439e+01 | 1.000e+00 | YES |
| 6 | 2.274358e+00 | 1.792e-03 | 4.010e-01 | OK | 3.109e+01 | 1.000e+00 | YES |
| 7 | 2.274105e+00 | 2.412e-03 | 2.399e-01 | OK | 3.557e+01 | 1.000e+00 | YES |
| 8 | 2.274073e+00 | 1.459e-03 | 7.684e-02 | OK | 1.356e+01 | 1.000e+00 | YES |
| 9 | 2.274050e+00 | 3.733e-04 | 3.797e-02 | OK | 1.725e+01 | 1.000e+00 | YES |
| 10 | 2.274043e+00 | 2.750e-04 | 1.379e-02 | OK | 2.445e+01 | 1.000e+00 | YES |
| 11 | 2.274027e+00 | 2.682e-04 | 5.701e-02 | OK | 7.386e+01 | 1.000e+00 | YES |
| 12 | 2.274020e+00 | 1.712e-04 | 4.107e-02 | OK | 9.461e+01 | 1.000e+00 | YES |
| 13 | 2.274014e+00 | 2.633e-04 | 6.720e-02 | OK | 7.469e+01 | 1.000e+00 | YES |
| 14 | 2.274012e+00 | 9.818e-05 | 2.263e-02 | OK | 3.275e+01 | 1.000e+00 | YES |
| 15 | 2.274012e+00 | 4.220e-05 | 6.188e-03 | OK | 2.799e+01 | 1.000e+00 | YES |
| 16 | 2.274012e+00 | 2.859e-05 | 4.979e-03 | OK | 6.628e+01 | 1.000e+00 | YES |
| 17 | 2.274011e+00 | 1.582e-05 | 6.767e-03 | OK | 1.439e+02 | 1.000e+00 | YES |
| 18 | 2.274011e+00 | 7.623e-06 | 4.311e-03 | OK | 1.211e+02 | 1.000e+00 | YES |
| 19 | 2.274011e+00 | 3.038e-06 | 2.528e-04 | OK | 1.798e+01 | 5.000e-01 | YES |
|====================================================================================================|
| ITER | FUN VALUE | NORM GRAD | NORM STEP | CURV | GAMMA | ALPHA | ACCEPT |
|====================================================================================================|
| 20 | 2.274011e+00 | 6.710e-07 | 2.325e-04 | OK | 2.721e+01 | 1.000e+00 | YES |
Infinity norm of the final gradient = 6.710e-07
Two norm of the final step = 2.325e-04, TolX = 1.000e-06
Relative infinity norm of the final gradient = 6.710e-07, TolFun = 1.000e-06
EXIT: Local minimum found.
Постройте выбранные функции.
figure plot(nca.FeatureWeights,'ro') xlabel('Feature Index') ylabel('Feature Weight') grid on

Несоответствующие функции имеют нулевые веса. Согласно этому рисунку, не выбраны функции 1, 3, и 9.
Подбирайте модель Gaussian process regression (GPR) с помощью подмножества метода регрессоров для оценки параметра и полностью независимого условного метода для предсказания. Используйте экспоненциальную функцию ядра ARD в квадрате, которая присваивает отдельный вес каждому предиктору. Стандартизируйте предикторы.
gprMdl = fitrgp(tbl,'NoShellRings','KernelFunction','ardsquaredexponential', ... 'FitMethod','sr','PredictMethod','fic','Standardize',true)
gprMdl =
RegressionGP
PredictorNames: {'Sex' 'Length' 'Diameter' 'Height' 'WWeight' 'SWeight' 'VWeight' 'ShWeight'}
ResponseName: 'NoShellRings'
CategoricalPredictors: 1
ResponseTransform: 'none'
NumObservations: 4177
KernelFunction: 'ARDSquaredExponential'
KernelInformation: [1×1 struct]
BasisFunction: 'Constant'
Beta: 11.4959
Sigma: 2.0282
PredictorLocation: [10×1 double]
PredictorScale: [10×1 double]
Alpha: [1000×1 double]
ActiveSetVectors: [1000×10 double]
PredictMethod: 'FIC'
ActiveSetSize: 1000
FitMethod: 'SR'
ActiveSetMethod: 'Random'
IsActiveSetVector: [4177×1 logical]
LogLikelihood: -9.0019e+03
ActiveSetHistory: [1×1 struct]
BCDInformation: []
Properties, Methods
Вычислите потерю регрессии на обучающих данных (потеря перезамены) для обученной модели.
L = resubLoss(gprMdl)
L = 4.0306
Самая маленькая перекрестная подтвержденная потеря с помощью fsrnca сопоставимо с потерей, полученной с помощью модели GPR с ядром ARD.
X — Значения переменного предиктораЗначения переменного предиктора в виде n-by-p матрица, где n является количеством наблюдений и p, являются количеством переменных предикторов.
Типы данных: single | double
Y — Значения откликаЗначения отклика в виде числового вектора действительных чисел длины n, где n является количеством наблюдений.
Типы данных: single | double
Задайте дополнительные разделенные запятой пары Name,Value аргументы. Name имя аргумента и Value соответствующее значение. Name должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN.
'Solver','sgd','Weights',W,'Lambda',0.0003 задает решатель как стохастический градиентный спуск, веса наблюдения как значения в векторном W, и устанавливает параметр регуляризации в 0,0003.'FitMethod' — Метод для того, чтобы подбирать модель'exact' (значение по умолчанию) | 'none' | 'average'Метод для того, чтобы подбирать модель в виде разделенной запятой пары, состоящей из 'FitMethod' и одно из следующего:
'exact' — Выполняет подбор кривой с помощью всех данных.
'none' — Никакой подбор кривой. Используйте эту опцию, чтобы оценить ошибку обобщения модели NCA с помощью начальных весов функции, предоставленных в вызове fsrnca.
'average' — Делит данные на разделы (подмножества), соответствует каждому разделу с помощью exact метод, и возвращает среднее значение весов функции. Можно задать количество разделов с помощью NumPartitions аргумент пары "имя-значение".
Пример: 'FitMethod','none'
'NumPartitions' Количество разделовmax(2,min(10,n)) (значение по умолчанию) | целое число между 2 и nКоличество разделов, чтобы разделить данные для использования с 'FitMethod','average' опция в виде разделенной запятой пары, состоящей из 'NumPartitions' и целочисленное значение между 2 и n, где n является количеством наблюдений.
Пример: 'NumPartitions',15
Типы данных: double | single
'Lambda' — Параметр регуляризацииПараметр регуляризации, чтобы предотвратить сверхподбор кривой в виде разделенной запятой пары, состоящей из 'Lambda' и неотрицательный скаляр.
Как количество наблюдений увеличения n, также уменьшается шанс сверхподбора кривой уменьшениям и необходимому количеству регуляризации. Смотрите Параметр Регуляризации Мелодии в NCA для Регрессии, чтобы изучить, как настроить параметр регуляризации.
Пример: 'Lambda',0.002
Типы данных: double | single
'LengthScale' — Ширина ядра (значение по умолчанию) | положительный действительный скалярШирина ядра в виде разделенной запятой пары, состоящей из 'LengthScale' и положительный действительный скаляр.
Значение шкалы расстояний 1 разумно, когда все предикторы находятся по той же шкале. Если предикторы в X имеют совсем другие величины, затем рассматривают стандартизацию значений предиктора с помощью 'Standardize',true и установка 'LengthScale',1.
Пример: 'LengthScale',1.5
Типы данных: double | single
'InitialFeatureWeights' — Начальные веса функцииones(p,1) (значение по умолчанию) | p-by-1 вектор из действительных положительных скалярных величинНачальные веса функции в виде разделенной запятой пары, состоящей из 'InitialFeatureWeights' и p-by-1 вектор из действительных положительных скалярных величин, где p является количеством предикторов в обучающих данных.
Упорядоченная целевая функция для оптимизации весов функции невыпукла. В результате использование различных начальных весов функции может дать различные результаты. Установка всех начальных весов функции к 1 обычно работает хорошо, но в некоторых случаях, случайная инициализация с помощью rand(p,1) может дать лучшие качественные решения.
Типы данных: double | single
'Weights' — Веса наблюденияВеса наблюдения в виде разделенной запятой пары, состоящей из 'ObservationWeights' и n-by-1 вектор из действительных положительных скалярных величин. Используйте веса наблюдения, чтобы задать более высокую важность некоторых наблюдений по сравнению с другими. Веса по умолчанию присваивают равную важность для всех наблюдений.
Типы данных: double | single
'Standardize' — Индикатор для стандартизации данных о предиктореfalse (значение по умолчанию) | trueИндикатор для стандартизации данных о предикторе в виде разделенной запятой пары, состоящей из 'Standardize' и любой false или true. Для получения дополнительной информации смотрите Удар Стандартизации.
Пример: 'Standardize',true
Типы данных: логический
'Verbose' — Индикатор уровня многословияИндикатор уровня многословия для отображения сводных данных сходимости в виде разделенной запятой пары, состоящей из 'Verbose' и одно из следующего:
0 — Никакие сводные данные сходимости
1 — сводные данные Сходимости, включая норму градиента и значений целевой функции
> 1 — Больше информации о сходимости, в зависимости от алгоритма подбора
При использовании 'minibatch-lbfgs' решатель и уровень многословия> 1, информация о сходимости включает итерацию журнал от промежуточных мини-пакетных подгонок LBFGS.
Пример: 'Verbose',1
Типы данных: double | single
'Solver' — Тип решателя'lbfgs' | 'sgd' | 'minibatch-lbfgs'Тип решателя для оценки весов функции в виде разделенной запятой пары, состоящей из 'Solver' и одно из следующего:
'lbfgs' — Ограниченная память Бройден Флетчер Голдфарб Шэнно (LBFGS) алгоритм
'sgd' — Алгоритм стохастического градиентного спуска (SGD)
'minibatch-lbfgs' — Стохастический градиентный спуск с алгоритмом LBFGS применился к мини-пакетам
Значением по умолчанию является 'lbfgs' для n ≤ 1000, и 'sgd' для n> 1000.
Пример: 'solver','minibatch-lbfgs'
'LossFunction' — Функция потерь'mad' (значение по умолчанию) | 'mse' | 'epsiloninsensitive' | указатель на функциюФункция потерь в виде разделенной запятой пары, состоящей из 'LossFunction' и одно из следующего:
'mad' — Означайте абсолютное отклонение
'mse' — Среднеквадратическая ошибка
'epsiloninsensitive' — Функция потерь ε-insensitive
Эта функция потерь более устойчива к выбросам, чем среднеквадратическая ошибка, или означайте абсолютное отклонение.
@ — Пользовательский указатель функции потерь. Функция потерь имеет эту форму.lossfun
function L = lossfun(Yu,Yv) % calculation of loss ...
Yu u-by-1 вектор и Yv v-by-1 вектор. L u-by-v, матрица потери оценивает таким образом что L(i,j) значение потерь для Yu(i) и Yv(j).Целевая функция для минимизации включает функцию потерь l (y i, y j) можно следующим образом:
где w является вектором веса функции, n является количеством наблюдений, и p является количеством переменных предикторов. ij p является вероятностью, что x j является контрольной точкой для x i. Для получения дополнительной информации см. Выбор признаков NCA для Регрессии.
Пример: 'LossFunction',@lossfun
'Epsilon' — Значение эпсилонаiqr(Y)/13.49 (значение по умолчанию) | неотрицательный действительный скалярЗначение эпсилона для 'LossFunction','epsiloninsensitive' опция в виде разделенной запятой пары, состоящей из 'LossFunction' и неотрицательный действительный скаляр. Значением по умолчанию является оценка демонстрационного стандартного отклонения с помощью межквартильного размаха переменной отклика.
Пример: 'Epsilon',0.1
Типы данных: double | single
'CacheSize' — Емкость памяти1000MB (значение по умолчанию) | целое числоЕмкость памяти, в Мбайте, чтобы использовать для целевой функции и расчета градиента в виде разделенной запятой пары, состоящей из 'CacheSize' и целое число.
Пример: 'CacheSize',1500MB
Типы данных: double | single
'HessianHistorySize' — Размер буфера истории для приближения Гессиана (значение по умолчанию) | положительное целое числоРазмер буфера истории для приближения Гессиана для 'lbfgs' решатель в виде разделенной запятой пары, состоящей из 'HessianHistorySize' и положительное целое число. В каждой итерации функция использует новый HessianHistorySize итерации, чтобы создать приближение к обратному Гессиану.
Пример: 'HessianHistorySize',20
Типы данных: double | single
'InitialStepSize' — Начальный размер шага'auto' (значение по умолчанию) | положительный действительный скалярНачальный размер шага для 'lbfgs' решатель в виде разделенной запятой пары, состоящей из 'InitialStepSize' и положительный действительный скаляр. По умолчанию функция определяет начальный размер шага автоматически.
Типы данных: double | single
'LineSearchMethod' — Метод поиска линии'weakwolfe' (значение по умолчанию) | 'strongwolfe' | 'backtracking'Метод поиска линии в виде разделенной запятой пары, состоящей из 'LineSearchMethod' и одно из следующего:
'weakwolfe' — Слабый поиск линии Вольфа
'strongwolfe' — Сильный поиск линии Вольфа
'backtracking' — Отслеживание в обратном порядке поиска линии
Пример: 'LineSearchMethod','backtracking'
'MaxLineSearchIterations' — Максимальное количество линии ищет итерации (значение по умолчанию) | положительное целое числоМаксимальное количество линии ищет итерации в виде разделенной запятой пары, состоящей из 'MaxLineSearchIterations' и положительное целое число.
Пример: 'MaxLineSearchIterations',25
Типы данных: double | single
'GradientTolerance' — Относительный допуск сходимости1e-6 (значение по умолчанию) | положительный действительный скалярОтносительный допуск сходимости на норме градиента для решателя lbfgsВ виде разделенной запятой пары, состоящей из 'GradientTolerance' и положительный действительный скаляр.
Пример: 'GradientTolerance',0.000002
Типы данных: double | single
'InitialLearningRate' — Начальная скорость обучения для 'sgd' решатель'auto' (значение по умолчанию) | положительный действительный скалярНачальная скорость обучения для 'sgd' решатель в виде разделенной запятой пары, состоящей из 'InitialLearningRate' и положительный действительный скаляр.
При использовании решателя вводят 'sgd', скорость обучения затухает по итерациям начиная со значения, заданного для 'InitialLearningRate'.
'auto' по умолчанию средние значения, что начальная скорость обучения определяется с помощью экспериментов на небольших подмножествах данных. Используйте NumTuningIterations аргумент пары "имя-значение", чтобы задать количество итераций для того, чтобы автоматически настроить начальную скорость обучения. Используйте TuningSubsetSize аргумент пары "имя-значение", чтобы задать количество наблюдений, чтобы использовать для того, чтобы автоматически настроить начальную скорость обучения.
Поскольку решатель вводит 'minibatch-lbfgs', можно установить 'InitialLearningRate' к очень высокому значению. В этом случае функция применяет LBFGS к каждому мини-пакету отдельно с начальными весами функции от предыдущего мини-пакета.
Чтобы убедиться выбранная начальная скорость обучения уменьшает объективное значение с каждой итерацией, постройте Iteration по сравнению с Objective значения, сохраненные в mdl.FitInfo свойство.
Можно использовать refit метод с 'InitialFeatureWeights' равняйтесь mdl.FeatureWeights начинать с текущего решения и запускать дополнительные итерации
Пример: 'InitialLearningRate',0.9
Типы данных: double | single
'MiniBatchSize' — Количество наблюдений, чтобы использовать в каждом пакете для 'sgd' решательКоличество наблюдений, чтобы использовать в каждом пакете для 'sgd' решатель в виде разделенной запятой пары, состоящей из 'MiniBatchSize' и положительное целое число от 1 до n.
Пример: 'MiniBatchSize',25
Типы данных: double | single
'PassLimit' — Максимальное количество передач для решателя 'sgd' (значение по умолчанию) | положительное целое число Максимальное количество проходит через все наблюдения n для решателя 'sgd'В виде разделенной запятой пары, состоящей из 'PassLimit' и положительное целое число. Каждый проходит через все данные, называется эпохой.
Пример: 'PassLimit',10
Типы данных: double | single
'NumPrint' — Частота пакетов для отображения сводных данных сходимостиЧастота пакетов для отображения сводных данных сходимости для 'sgd' решатель в виде разделенной запятой пары, состоящей из 'NumPrint' и положительное целое число. Этот аргумент применяется когда 'Verbose' значение больше 0. NumPrint мини-пакеты обрабатываются для каждой линии сводных данных сходимости, которые отображены на командной строке.
Пример: 'NumPrint',5
Типы данных: double | single
'NumTuningIterations' — Количество настраивающихся итерацийКоличество настраивающихся итераций для 'sgd' решатель в виде разделенной запятой пары, состоящей из 'NumTuningIterations' и положительное целое число. Эта опция допустима только для 'InitialLearningRate','auto'.
Пример: 'NumTuningIterations',15
Типы данных: double | single
'TuningSubsetSize' — Количество наблюдений, чтобы использовать для настройки начальной скорости обученияКоличество наблюдений, чтобы использовать для настройки начальной скорости обучения в виде разделенной запятой пары, состоящей из 'TuningSubsetSize' и положительное целочисленное значение от 1 до n. Эта опция допустима только для 'InitialLearningRate','auto'.
Пример: 'TuningSubsetSize',25
Типы данных: double | single
'IterationLimit' — Максимальное количество итерацийМаксимальное количество итераций в виде разделенной запятой пары, состоящей из 'IterationLimit' и положительное целое число. Значение по умолчанию 10000 для SGD и 1000 для LBFGS и мини-пакетного LBFGS.
Каждый проходит через пакет, итерация. Каждый проходит через все данные, эпоха. Если данные разделены на мини-пакеты k, то каждая эпоха эквивалентна итерациям k.
Пример: 'IterationLimit',250
Типы данных: double | single
'StepTolerance' — Допуск сходимости на размере шагаДопуск сходимости на размере шага в виде разделенной запятой пары, состоящей из 'StepTolerance' и положительный действительный скаляр. 'lbfgs' решатель использует абсолютный допуск шага и 'sgd' решатель использует относительный допуск шага.
Пример: 'StepTolerance',0.000005
Типы данных: double | single
'MiniBatchLBFGSIterations' — Максимальное количество итераций на мини-пакетный шаг LBFGSМаксимальное количество итераций на мини-пакетный LBFGS продвигается в виде разделенной запятой пары, состоящей из 'MiniBatchLBFGSIterations' и положительное целое число.
Пример: 'MiniBatchLBFGSIterations',15
Мини-пакетный алгоритм LBFGS является комбинацией SGD и методов LBFGS. Поэтому все аргументы пары "имя-значение", которые применяются к SGD и решателям LBFGS также, применяются к мини-пакетному алгоритму LBFGS.
Типы данных: double | single
mdl — Аналитическая модель компонента окружения для регрессииFeatureSelectionNCARegression объектАналитическая модель компонента окружения для регрессии, возвращенной как FeatureSelectionNCARegression объект.
[1] Расмуссен, C. E. Р. М. Нил, Г. Э. Хинтон, Д. ван Кэмпэнд, M. Повторно поклянитесь, З. Гэхрэмани, Р. Кастра, Р. Тибширэни. Руководство DELVE, 1996, http://mlg.eng.cam.ac.uk/pub/pdf/RasNeaHinetal96.pdf.
[2] Университет Торонто, Кафедра информатики. Пашите Наборы данных. http://www.cs.toronto.edu / ~ delve/data/datasets.html.
[3] Нэш, W.J., Т. Л. Селлерс, С. Р. Тэлбот, А. Дж. Которн и В. Б. Форд. "Биология Населения Морского ушка (разновидности Haliotis) на Тасмании. I. Морское ушко Blacklip (H. rubra) от Северного Побережья и Островов Пролива Басса". Морское Деление Рыболовства, Технический отчет № 48, 1994.
[4] Во, S. "Расширяя и Тестируя Каскадной Корреляции в сравнении с эталоном: Расширения Архитектуры Каскадной Корреляции и Сравнительное тестирование Feedforward Контролируемые Искусственные Нейронные сети". Университет тезиса Факультета информатики Тасмании, 1995.
[5] Личмен, M. Репозиторий Машинного обучения UCI. Ирвин, CA: Калифорнийский университет, Школа Информатики и вычислительной техники, 2013. http://archive.ics.uci.edu/ml.
У вас есть модифицированная версия этого примера. Вы хотите открыть этот пример со своими редактированиями?
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.