fitted

Класс: GeneralizedLinearMixedModel

Подходящие ответы из обобщенной линейной модели смешанных эффектов

Описание

пример

mufit = fitted(glme) возвращает подходящий условный ответ обобщенной линейной модели glme смешанных эффектов.

mufit = fitted(glme,Name,Value) возвращает подходящий ответ с дополнительными опциями, заданными одним или несколькими аргументами пары "имя-значение". Например, можно задать, чтобы вычислить крайний подходящий ответ.

Входные параметры

развернуть все

Обобщенная линейная модель смешанных эффектов в виде GeneralizedLinearMixedModel объект. Для свойств и методов этого объекта, смотрите GeneralizedLinearMixedModel.

Аргументы в виде пар имя-значение

Задайте дополнительные разделенные запятой пары Name,Value аргументы. Name имя аргумента и Value соответствующее значение. Name должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN.

Индикатор для условного ответа в виде разделенной запятой пары, состоящей из 'Conditional' и одно из следующих.

ЗначениеОписание
trueВклады и от зафиксированных эффектов и от случайных эффектов (условное выражение)
falseВклад только от фиксированных (крайних) эффектов

Получить адаптированные крайние значения отклика, fitted вычисляет условное среднее значение ответа с эмпирическим вектором предиктора Бейеса из случайных эффектов набор b, равный 0. Для получения дополнительной информации смотрите Условный и Крайний Ответ

Пример: 'Conditional',false

Выходные аргументы

развернуть все

Подходящие значения отклика, возвращенные как n-by-1 вектор, где n является количеством наблюдений.

Примеры

развернуть все

Загрузите выборочные данные.

load mfr

Эти симулированные данные от компании-производителя, которая управляет 50 фабриками во всем мире с каждой фабрикой, запускающей процесс пакетной обработки, чтобы создать готовое изделие. Компания хочет сократить число дефектов в каждом пакете, таким образом, это разработало новый производственный процесс. Чтобы протестировать эффективность нового процесса, компания выбрала 20 своих фабрик наугад, чтобы участвовать в эксперименте: Десять фабрик реализовали новый процесс, в то время как другие десять продолжали запускать старый процесс. На каждой из этих 20 фабрик компания запустила пять пакетов (для в общей сложности 100 пакетов) и записала следующие данные:

  • Отметьте, чтобы указать, использовал ли пакет новый процесс (newprocess)

  • Время вычислений для каждого пакета, в часах (time)

  • Температура пакета, в градусах Цельсия (temp)

  • Категориальная переменная, указывающая на поставщика (AB, или C) из химиката, используемого в пакете (supplier)

  • Количество дефектов в пакете (defects)

Данные также включают time_dev и temp_dev, которые представляют абсолютное отклонение времени и температуры, соответственно, из стандарта процесса 3 часов на уровне 20 градусов Цельсия.

Подбирайте обобщенную линейную модель смешанных эффектов использование newprocess, time_dev, temp_dev, и supplier как предикторы фиксированных эффектов. Включайте термин случайных эффектов для точки пересечения, сгруппированной factory, с учетом качественных различий, которые могут существовать из-за специфичных для фабрики изменений. Переменная отклика defects имеет распределение Пуассона, и соответствующая функция ссылки для этой модели является журналом. Используйте подходящий метод Лапласа, чтобы оценить коэффициенты. Задайте фиктивную переменную, кодирующую как 'effects', таким образом, фиктивные переменные коэффициенты суммируют к 0.

Количество дефектов может быть смоделировано с помощью распределения Пуассона

defectsijПуассон(μij)

Это соответствует обобщенной линейной модели смешанных эффектов

log(μij)=β0+β1newprocessij+β2time_devij+β3temp_devij+β4supplier_Cij+β5supplier_Bij+bi,

где

  • defectsij количество дефектов, наблюдаемых в пакете, произведенном фабрикой i во время пакета j.

  • μij среднее количество дефектов, соответствующих фабрике i (где i=1,2,...,20) во время пакета j (где j=1,2,...,5).

  • newprocessij, time_devij, и temp_devij измерения для каждой переменной, которые соответствуют фабрике i во время пакета j. Например, newprocessij указывает ли пакет, произведенный фабрикой i во время пакета j используемый новый процесс.

  • supplier_Cij и supplier_Bij фиктивные переменные, которые используют эффекты (сумма к нулю) кодирование, чтобы указать ли компания C или B, соответственно, предоставленный химикаты процесса для пакета производятся фабрикой i во время пакета j.

  • biN(0,σb2) точка пересечения случайных эффектов для каждой фабрики i это составляет специфичное для фабрики изменение по качеству.

glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)', ...
    'Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');

Сгенерируйте подходящие условные средние значения для модели.

mufit = fitted(glme);

Создайте scatterplot наблюдаемых величин по сравнению с подходящими значениями.

figure
scatter(mfr.defects,mufit)
title('Residuals versus Fitted Values')
xlabel('Fitted Values')
ylabel('Residuals')

Figure contains an axes. The axes with title Residuals versus Fitted Values contains an object of type scatter.

Больше о

развернуть все