resubPredict

Предскажите ответы для обучающих данных с помощью обученной модели регрессии

    Описание

    пример

    yFit = resubPredict(Mdl) возвращает вектор из предсказанных ответов для обученной модели Mdl регрессии использование данных о предикторе сохранено в Mdl.X.

    пример

    yFit = resubPredict(Mdl,'IncludeInteractions',includeInteractions) задает, включать ли периоды взаимодействия в расчеты. Этот синтаксис применяется только к обобщенным аддитивным моделям.

    Примеры

    свернуть все

    Обучите обобщенную аддитивную модель (GAM), затем предскажите ответы для обучающих данных.

    Загрузите patients набор данных.

    load patients

    Составьте таблицу, которая содержит переменные предикторы (Age, Diastolic, Smoker, Weight, Gender, SelfAssessedHealthStatus) и переменная отклика (Systolic).

    tbl = table(Age,Diastolic,Smoker,Weight,Gender,SelfAssessedHealthStatus,Systolic);

    Обучите одномерный GAM, который содержит линейные члены для предикторов в tbl.

    Mdl = fitrgam(tbl,"Systolic")
    Mdl = 
      RegressionGAM
               PredictorNames: {1x6 cell}
                 ResponseName: 'Systolic'
        CategoricalPredictors: [3 5 6]
            ResponseTransform: 'none'
                    Intercept: 122.7800
              NumObservations: 100
    
    
      Properties, Methods
    
    

    Mdl RegressionGAM объект модели.

    Предскажите ответы для набора обучающих данных.

    yFit = resubPredict(Mdl);

    Составьте таблицу, содержащую наблюдаемые значения отклика и предсказанные значения отклика. Отобразите первые восемь строк таблицы.

    t = table(tbl.Systolic,yFit, ...
        'VariableNames',{'Observed Value','Predicted Value'});
    head(t)
    ans=8×2 table
        Observed Value    Predicted Value
        ______________    _______________
    
             124              124.75     
             109              109.48     
             125              122.89     
             117              115.87     
             122              121.61     
             121              122.02     
             130              126.39     
             115              115.95     
    
    

    Предскажите ответы для обучающего набора данных с помощью обобщенной аддитивной модели (GAM), которая содержит и линейные члены и периоды взаимодействия для предикторов. Задайте, включать ли периоды взаимодействия при предсказании ответов.

    Загрузите carbig набор данных, который содержит измерения автомобилей, сделанных в 1970-х и в начале 1980-х.

    load carbig

    Задайте Acceleration, Displacement, Horsepower, и Weight как переменные предикторы (X) и MPG как переменная отклика (Y).

    X = [Acceleration,Displacement,Horsepower,Weight];
    Y = MPG;

    Обучите обобщенную аддитивную модель, которая содержит все доступные линейные члены и периоды взаимодействия в X.

    Mdl = fitrgam(X,Y,'Interactions','all');

    Mdl RegressionGAM объект модели.

    Предскажите ответы, использующие и линейные термины и периоды взаимодействия, и затем использующие только линейные члены. Чтобы исключить периоды взаимодействия, задайте 'IncludeInteractions',false.

    yFit = resubPredict(Mdl);
    yFit_nointeraction = resubPredict(Mdl,'IncludeInteractions',false);

    Составьте таблицу, содержащую наблюдаемые значения отклика и предсказанные значения отклика. Отобразите первые восемь строк таблицы.

    t = table(Mdl.Y,yFit,yFit_nointeraction, ...
        'VariableNames',{'Observed Response', ...
        'Predicted Response','Predicted Response Without Interactions'});
    head(t)
    ans=8×3 table
        Observed Response    Predicted Response    Predicted Response Without Interactions
        _________________    __________________    _______________________________________
    
               18                  18.026                           17.22                 
               15                  15.003                          15.791                 
               18                  17.663                           16.18                 
               16                  16.178                          15.536                 
               17                  17.107                          17.361                 
               15                  14.943                          14.424                 
               14                  14.119                          14.981                 
               14                  13.864                          13.498                 
    
    

    Входные параметры

    свернуть все

    Модель машинного обучения регрессии в виде полного объекта модели регрессии, как дали в следующей таблице поддерживаемых моделей.

    МодельОбъект модели регрессии
    Обобщенная аддитивная модельRegressionGAM
    Модель нейронной сетиRegressionNeuralNetwork

    Отметьте, чтобы включать периоды взаимодействия модели в виде true или false. Этот аргумент допустим только для обобщенной аддитивной модели (GAM). Таким образом, можно задать этот аргумент только когда Mdl RegressionGAM.

    Значением по умолчанию является true если Mdl содержит периоды взаимодействия. Значением должен быть false если модель не содержит периоды взаимодействия.

    Типы данных: логический

    Выходные аргументы

    свернуть все

    Предсказанные ответы, возвращенные как вектор из длины n, где n является количеством наблюдений в данных о предикторе (Mdl.X).

    Алгоритмы

    resubPredict предсказывает ответы согласно соответствию predict функция объекта (Mdl). Для описания модели специфичного смотрите predict страницы ссылки на функцию в следующей таблице.

    МодельОбъект модели регрессии (Mdl)predict Объектная функция
    Обобщенная аддитивная модельRegressionGAMpredict
    Модель нейронной сетиRegressionNeuralNetworkpredict

    Смотрите также

    Введенный в R2021a