ldaModel

Модель Latent Dirichlet allocation (LDA)

Описание

Модель скрытого выделения Дирихле (LDA) является моделью темы, которая обнаруживает базовые темы в наборе документов и выводит вероятности слова в темах. Если модель была подходящим использованием мешка n модели граммов, то программное обеспечение обрабатывает N-граммы как отдельные слова.

Создание

Создайте модель LDA с помощью fitlda функция.

Свойства

развернуть все

Количество тем в модели LDA в виде положительного целого числа.

Концентрация темы в виде положительной скалярной величины. Функция устанавливает концентрацию на тему к TopicConcentration/NumTopics. Для получения дополнительной информации смотрите Скрытое Выделение Дирихле.

Концентрация Word в виде неотрицательного скаляра. Программное обеспечение устанавливает концентрацию на слово к WordConcentration/numWords, где numWords размер словаря входных документов. Для получения дополнительной информации смотрите Скрытое Выделение Дирихле.

Вероятности темы входного документа установлены в виде вектора. Корпусные вероятности темы модели LDA являются вероятностями наблюдения, что каждая тема в целом наборе данных раньше подбирала модель LDA. CorpusTopicProbabilities 1 K вектором, где K является количеством тем. k th запись CorpusTopicProbabilities соответствует вероятности наблюдения темы k.

Вероятности темы на входной документ в виде матрицы. Вероятности тематики документа модели LDA являются вероятностями наблюдения, что каждая тема в каждом документе раньше подбирала модель LDA. DocumentTopicProbabilities D-by-K матрица, где D является количеством документов, используемых, чтобы подбирать модель LDA, и K является количеством тем. (d,k) th запись DocumentTopicProbabilities соответствует вероятности наблюдения темы k в документе d.

Если у кого-либо темы есть нулевая вероятность (CorpusTopicProbabilities содержит нули), затем соответствующие столбцы DocumentTopicProbabilities и TopicWordProbabilities нули.

Порядок строк в DocumentTopicProbabilities соответствует порядку документов в обучающих данных.

Вероятности Word на тему в виде матрицы. Вероятности слова темы модели LDA являются вероятностями наблюдения каждого слова в каждой теме модели LDA. TopicWordProbabilities V-by-K матрица, где V является количеством слов в Vocabulary и K является количеством тем. (v,k) th запись TopicWordProbabilities соответствует вероятности наблюдения слова v в теме k.

Если у кого-либо темы есть нулевая вероятность (CorpusTopicProbabilities содержит нули), затем соответствующие столбцы DocumentTopicProbabilities и TopicWordProbabilities нули.

Порядок строк в TopicWordProbabilities соответствует порядку слов в Vocabulary.

Порядок темы в виде одного из следующего:

  • 'initial-fit-probability' – Сортировка тем корпусными вероятностями темы начальной подгонки модели. Этими вероятностями является CorpusTopicProbabilities свойство начального ldaModel объект возвращен fitlda. resume функция не переупорядочивает темы получившегося ldaModel объекты.

  • 'unordered' – Не заказывайте темы.

Информация, зарегистрированная, подбирая модель LDA в виде struct со следующими полями:

  • TerminationCode – Состояние оптимизации на выход

    • 0 – Предел итерации достигнут.

    • 1 – Допуск на логарифмической правдоподобности, которой удовлетворяют.

  • TerminationStatus – Объяснение возвращенного кода завершения

  • NumIterations – Количество итераций выполняется

  • NegativeLogLikelihood – Отрицательная логарифмическая правдоподобность для данных передала fitlda

  • Perplexity – Недоумение для данных передало fitlda

  • Solver – Имя решателя используется

  • History – Struct, содержащий историю оптимизации

  • StochasticInfo – Информация содержащего Struct для стохастических решателей

Типы данных: struct

Список слов в модели в виде вектора строки.

Типы данных: string

Функции объекта

logpЛогарифмические вероятности документа и качество подгонки модели LDA
predictПредскажите главные темы LDA документов
resumeПродолжите подбирать модель LDA
topkwordsБольшинство важных слов в модели сумки слов или теме LDA
transformПреобразуйте документы в более низкое мерное пространство
wordcloudСоздайте график облака слова из текста, модели сумки слов, мешка n модели граммов или модели LDA

Примеры

свернуть все

Чтобы воспроизвести результаты в этом примере, установите rng к 'default'.

rng('default')

Загрузите данные в качестве примера. Файл sonnetsPreprocessed.txt содержит предварительно обработанные версии сонетов Шекспира. Файл содержит один сонет на строку со словами, разделенными пробелом. Извлеките текст из sonnetsPreprocessed.txt, разделите текст в документы в символах новой строки, и затем маркируйте документы.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Создайте модель сумки слов использование bagOfWords.

bag = bagOfWords(documents)
bag = 
  bagOfWords with properties:

          Counts: [154x3092 double]
      Vocabulary: [1x3092 string]
        NumWords: 3092
    NumDocuments: 154

Подбирайте модель LDA с четырьмя темами.

numTopics = 4;
mdl = fitlda(bag,numTopics)
Initial topic assignments sampled in 0.077325 seconds.
=====================================================================================
| Iteration  |  Time per  |  Relative  |  Training  |     Topic     |     Topic     |
|            | iteration  | change in  | perplexity | concentration | concentration |
|            | (seconds)  |   log(L)   |            |               |   iterations  |
=====================================================================================
|          0 |       0.36 |            |  1.215e+03 |         1.000 |             0 |
|          1 |       0.01 | 1.0482e-02 |  1.128e+03 |         1.000 |             0 |
|          2 |       0.01 | 1.7190e-03 |  1.115e+03 |         1.000 |             0 |
|          3 |       0.01 | 4.3796e-04 |  1.118e+03 |         1.000 |             0 |
|          4 |       0.01 | 9.4193e-04 |  1.111e+03 |         1.000 |             0 |
|          5 |       0.01 | 3.7079e-04 |  1.108e+03 |         1.000 |             0 |
|          6 |       0.01 | 9.5777e-05 |  1.107e+03 |         1.000 |             0 |
=====================================================================================
mdl = 
  ldaModel with properties:

                     NumTopics: 4
             WordConcentration: 1
            TopicConcentration: 1
      CorpusTopicProbabilities: [0.2500 0.2500 0.2500 0.2500]
    DocumentTopicProbabilities: [154x4 double]
        TopicWordProbabilities: [3092x4 double]
                    Vocabulary: [1x3092 string]
                    TopicOrder: 'initial-fit-probability'
                       FitInfo: [1x1 struct]

Визуализируйте темы с помощью облаков слова.

figure
for topicIdx = 1:4
    subplot(2,2,topicIdx)
    wordcloud(mdl,topicIdx);
    title("Topic: " + topicIdx)
end

Figure contains objects of type wordcloud. The chart of type wordcloud has title Topic: 1. The chart of type wordcloud has title Topic: 2. The chart of type wordcloud has title Topic: 3. The chart of type wordcloud has title Topic: 4.

Составьте таблицу слов с самой высокой вероятностью темы LDA.

Чтобы воспроизвести результаты, установите rng к 'default'.

rng('default')

Загрузите данные в качестве примера. Файл sonnetsPreprocessed.txt содержит предварительно обработанные версии сонетов Шекспира. Файл содержит один сонет на строку со словами, разделенными пробелом. Извлеките текст из sonnetsPreprocessed.txt, разделите текст в документы в символах новой строки, и затем маркируйте документы.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Создайте модель сумки слов использование bagOfWords.

bag = bagOfWords(documents);

Подбирайте модель LDA с 20 темами. Чтобы подавить многословный выход, установите 'Verbose' к 0.

numTopics = 20;
mdl = fitlda(bag,numTopics,'Verbose',0);

Найдите лучшие 20 слов первой темы.

k = 20;
topicIdx = 1;
tbl = topkwords(mdl,k,topicIdx)
tbl=20×2 table
      Word        Score  
    ________    _________

    "eyes"        0.11155
    "beauty"      0.05777
    "hath"       0.055778
    "still"      0.049801
    "true"       0.043825
    "mine"       0.033865
    "find"       0.031873
    "black"      0.025897
    "look"       0.023905
    "tis"        0.023905
    "kind"       0.021913
    "seen"       0.021913
    "found"      0.017929
    "sin"        0.015937
    "three"      0.013945
    "golden"    0.0099608
      ⋮

Найдите лучшие 20 слов первой темы и используйте среднее значение инверсии масштабироваться на баллах.

tbl = topkwords(mdl,k,topicIdx,'Scaling','inversemean')
tbl=20×2 table
      Word       Score  
    ________    ________

    "eyes"        1.2718
    "beauty"     0.59022
    "hath"        0.5692
    "still"      0.50269
    "true"       0.43719
    "mine"       0.32764
    "find"       0.32544
    "black"      0.25931
    "tis"        0.23755
    "look"       0.22519
    "kind"       0.21594
    "seen"       0.21594
    "found"      0.17326
    "sin"        0.15223
    "three"      0.13143
    "golden"    0.090698
      ⋮

Создайте облако слова с помощью масштабированных баллов в качестве данных о размере.

figure
wordcloud(tbl.Word,tbl.Score);

Figure contains an object of type wordcloud.

Доберитесь вероятности тематики документа (также известный как смеси темы) документов раньше подбирали модель LDA.

Чтобы воспроизвести результаты, установите rng к 'default'.

rng('default')

Загрузите данные в качестве примера. Файл sonnetsPreprocessed.txt содержит предварительно обработанные версии сонетов Шекспира. Файл содержит один сонет на строку со словами, разделенными пробелом. Извлеките текст из sonnetsPreprocessed.txt, разделите текст в документы в символах новой строки, и затем маркируйте документы.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Создайте модель сумки слов использование bagOfWords.

bag = bagOfWords(documents);

Подбирайте модель LDA с 20 темами. Чтобы подавить многословный выход, установите 'Verbose' к 0.

numTopics = 20;
mdl = fitlda(bag,numTopics,'Verbose',0)
mdl = 
  ldaModel with properties:

                     NumTopics: 20
             WordConcentration: 1
            TopicConcentration: 5
      CorpusTopicProbabilities: [1x20 double]
    DocumentTopicProbabilities: [154x20 double]
        TopicWordProbabilities: [3092x20 double]
                    Vocabulary: [1x3092 string]
                    TopicOrder: 'initial-fit-probability'
                       FitInfo: [1x1 struct]

Просмотрите вероятности темы первого документа в обучающих данных.

topicMixtures = mdl.DocumentTopicProbabilities;
figure
bar(topicMixtures(1,:))
title("Document 1 Topic Probabilities")
xlabel("Topic Index")
ylabel("Probability")

Figure contains an axes. The axes with title Document 1 Topic Probabilities contains an object of type bar.

Чтобы воспроизвести результаты в этом примере, установите rng к 'default'.

rng('default')

Загрузите данные в качестве примера. Файл sonnetsPreprocessed.txt содержит предварительно обработанные версии сонетов Шекспира. Файл содержит один сонет на строку со словами, разделенными пробелом. Извлеките текст из sonnetsPreprocessed.txt, разделите текст в документы в символах новой строки, и затем маркируйте документы.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Создайте модель сумки слов использование bagOfWords.

bag = bagOfWords(documents)
bag = 
  bagOfWords with properties:

          Counts: [154x3092 double]
      Vocabulary: [1x3092 string]
        NumWords: 3092
    NumDocuments: 154

Подбирайте модель LDA с 20 темами.

numTopics = 20;
mdl = fitlda(bag,numTopics)
Initial topic assignments sampled in 0.029643 seconds.
=====================================================================================
| Iteration  |  Time per  |  Relative  |  Training  |     Topic     |     Topic     |
|            | iteration  | change in  | perplexity | concentration | concentration |
|            | (seconds)  |   log(L)   |            |               |   iterations  |
=====================================================================================
|          0 |       0.39 |            |  1.159e+03 |         5.000 |             0 |
|          1 |       0.13 | 5.4884e-02 |  8.028e+02 |         5.000 |             0 |
|          2 |       0.11 | 4.7400e-03 |  7.778e+02 |         5.000 |             0 |
|          3 |       0.11 | 3.4597e-03 |  7.602e+02 |         5.000 |             0 |
|          4 |       0.14 | 3.4662e-03 |  7.430e+02 |         5.000 |             0 |
|          5 |       0.11 | 2.9259e-03 |  7.288e+02 |         5.000 |             0 |
|          6 |       0.14 | 6.4180e-05 |  7.291e+02 |         5.000 |             0 |
=====================================================================================
mdl = 
  ldaModel with properties:

                     NumTopics: 20
             WordConcentration: 1
            TopicConcentration: 5
      CorpusTopicProbabilities: [1x20 double]
    DocumentTopicProbabilities: [154x20 double]
        TopicWordProbabilities: [3092x20 double]
                    Vocabulary: [1x3092 string]
                    TopicOrder: 'initial-fit-probability'
                       FitInfo: [1x1 struct]

Предскажите главные темы для массива новых документов.

newDocuments = tokenizedDocument([
    "what's in a name? a rose by any other name would smell as sweet."
    "if music be the food of love, play on."]);
topicIdx = predict(mdl,newDocuments)
topicIdx = 2×1

    19
     8

Визуализируйте предсказанные темы с помощью облаков слова.

figure
subplot(1,2,1)
wordcloud(mdl,topicIdx(1));
title("Topic " + topicIdx(1))
subplot(1,2,2)
wordcloud(mdl,topicIdx(2));
title("Topic " + topicIdx(2))

Figure contains objects of type wordcloud. The chart of type wordcloud has title Topic 19. The chart of type wordcloud has title Topic 8.

Больше о

развернуть все

Введенный в R2017b
Для просмотра документации необходимо авторизоваться на сайте