Поля привязки являются важными параметрами детекторов объектов глубокого обучения, такими как Faster R-CNN и YOLO v2. Форма, шкала и количество полей привязки влияют на КПД и точность детекторов.
Для получения дополнительной информации смотрите Поля Привязки для Обнаружения объектов.
Загрузите набор данных транспортного средства, который содержит 295 изображений и сопоставленные метки поля.
data = load('vehicleTrainingData.mat');
vehicleDataset = data.vehicleTrainingData;
Добавьте полный путь в локальную папку данных о транспортном средстве.
dataDir = fullfile(toolboxdir('vision'),'visiondata'); vehicleDataset.imageFilename = fullfile(dataDir,vehicleDataset.imageFilename);
Отобразите сводные данные набора данных.
summary(vehicleDataset)
Variables: imageFilename: 295×1 cell array of character vectors vehicle: 295×1 cell
Визуализируйте помеченные поля, чтобы лучше изучить область значений размеров объекта, существующих в наборе данных.
Объедините все основные блоки истинности в один массив.
allBoxes = vertcat(vehicleDataset.vehicle{:});
Постройте область поля по сравнению с соотношением сторон поля.
aspectRatio = allBoxes(:,3) ./ allBoxes(:,4); area = prod(allBoxes(:,3:4),2); figure scatter(area,aspectRatio) xlabel("Box Area") ylabel("Aspect Ratio (width/height)"); title("Box Area vs. Aspect Ratio")
График показывает несколько групп объектов, которые имеют подобный размер и форму, Однако потому что группы распространены, вручную выбор полей привязки затрудняет. Лучший способ оценить поля привязки состоит в том, чтобы использовать кластеризирующийся алгоритм, который может сгруппировать подобные поля вместе с помощью значимой метрики.
Оцените поля привязки от обучающих данных с помощью estimateAnchorBoxes
функция, которая использует метрику расстояния пересечения по объединению (IoU).
Метрика расстояния на основе IoU является инвариантной к размеру полей, в отличие от Евклидовой метрики расстояния, которая производит большие ошибки, когда размеры поля увеличиваются [1]. Кроме того, использование метрики расстояния IoU приводит к полям подобных соотношений сторон и размеров, кластеризируемых вместе, который приводит к оценкам поля привязки, которые соответствуют данным.
Создайте boxLabelDatastore
использование основных блоков истинности в наборе данных транспортного средства. Если шаг предварительной обработки для обучения, детектор объектов включает изменение размеров изображений, используйте transform
и bboxresize
изменить размер ограничительных рамок в boxLabelDatastore
прежде, чем оценить поля привязки.
trainingData = boxLabelDatastore(vehicleDataset(:,2:end));
Выберите количество привязок и оцените поля привязки с помощью estimateAnchorBoxes
функция.
numAnchors = 5;
[anchorBoxes, meanIoU] = estimateAnchorBoxes (trainingData, numAnchors);
anchorBoxes
anchorBoxes = 5×2
21 27
87 116
67 92
43 61
86 105
Выбор количества привязок является другим учебным гиперпараметром, который требует тщательного выбора с помощью эмпирического анализа. Одной качественной мерой для оценки предполагаемых полей привязки является средний IoU полей в каждом кластере. estimateAnchorBoxes
функционируйте использует k-средних значений, кластеризирующих алгоритм с метрикой расстояния IoU, чтобы вычислить перекрытие с помощью уравнения, 1 -
bboxOverlapRatio
(allBoxes,boxInCluster)
.
meanIoU
meanIoU = 0.8411
Среднее значение IoU, больше, чем 0,5, гарантирует, что поля привязки перекрываются хорошо с полями в обучающих данных. Увеличение числа привязок может улучшить среднюю меру IoU. Однако использование большего количества привязки окружает детектор объектов, может также увеличить стоимость расчета и привести к сверхподбору кривой, который приводит к плохой эффективности детектора.
Развернитесь в области значений значений и постройте средний IoU по сравнению с количеством полей привязки, чтобы измерить компромисс между количеством привязок и означать IoU.
maxNumAnchors = 15; meanIoU = zeros([maxNumAnchors,1]); anchorBoxes = cell(maxNumAnchors, 1); for k = 1:maxNumAnchors % Estimate anchors and mean IoU. [anchorBoxes{k},meanIoU(k)] = estimateAnchorBoxes(trainingData,k); end figure plot(1:maxNumAnchors,meanIoU,'-o') ylabel("Mean IoU") xlabel("Number of Anchors") title("Number of Anchors vs. Mean IoU")
Используя два результата полей привязки в среднем значении IoU, больше, чем 0,65 и использование больше чем 7 полей привязки, дает только к незначительному улучшению среднего значения IoU. Учитывая эти результаты, следующий шаг должен обучить и оценить несколько детекторов объектов с помощью значений между 2 и 6. Этот эмпирический анализ помогает определить количество полей привязки, требуемых удовлетворить требованиям приложений к производительности, таким как скорость обнаружения или точность.
Redmon, Джозеф и Али Фархади. "YOLO9000: лучше, быстрее, более сильный". В Продолжениях конференции по IEEE по компьютерному зрению и распознаванию образов, стр 7263-7271. 2017.
[1] Redmon, Джозеф и Али Фархади. “YOLO9000: Лучше, Быстрее, Более сильный”. На 2 017 Конференциях по IEEE по Компьютерному зрению и Распознаванию образов (CVPR), 6517–25. Гонолулу, HI: IEEE, 2017. https://doi.org/10.1109/CVPR.2017.690.