exponenta event banner

образец

Системный объект: поэтапный. PartitionedArray
Пакет: поэтапный

Печать шаблонов направленности, поля и мощности секционированного массива

Синтаксис

pattern(sArray,FREQ)
pattern(sArray,FREQ,AZ)
pattern(sArray,FREQ,AZ,EL)
pattern(___,Name,Value)
[PAT,AZ_ANG,EL_ANG] = pattern(___)

Описание

pattern(sArray,FREQ) отображает шаблон направленности массива 3-D (в дБи) для массива, указанного в sArray. Рабочая частота указана в FREQ.

Интеграция, используемая при вычислении направленности массива, имеет минимальную сетку выборки 0,1 градуса. Если массив имеет ширину луча меньше, значение направленности будет неточным.

pattern(sArray,FREQ,AZ) строит диаграмму направленности массива на заданном азимутальном угле.

pattern(sArray,FREQ,AZ,EL) строит диаграмму направленности массива на заданных углах азимута и отметки.

pattern(___,Name,Value) отображает массив с дополнительными опциями, заданными одним или несколькими Name,Value аргументы пары.

[PAT,AZ_ANG,EL_ANG] = pattern(___) возвращает шаблон массива в PAT. AZ_ANG вывод содержит значения координат, соответствующие строкам PAT. EL_ANG вывод содержит значения координат, соответствующие столбцам PAT. Если 'CoordinateSystem' параметр имеет значение 'uv', то AZ_ANG содержит координаты U шаблона и EL_ANG содержит координаты V образца. В противном случае они находятся в угловых единицах в градусах. Единицы УФ-излучения безразмерны.

Примечание

Этот метод заменяет plotResponse способ. Инструкции по использованию см. в разделе Преобразование plotResponse в шаблон pattern вместо plotResponse.

Входные аргументы

развернуть все

Секционированный массив, указанный как phased.PartitionedArray Системный объект.

Пример: sArray= phased.PartitionedArray;

Частоты для вычисления направленности и шаблонов, заданные как положительный скалярный или 1-by-L действительный вектор строки. Единицы частоты - в герцах.

  • Для антенны, микрофона или гидрофона или проекционного элемента, FREQ должны находиться в диапазоне значений, указанных FrequencyRange или FrequencyVector свойство элемента. В противном случае элемент не выдает отклик, и направление возвращается как –Inf. Большинство элементов используют FrequencyRange собственность, за исключением phased.CustomAntennaElement и phased.CustomMicrophoneElement, которые используют FrequencyVector собственность.

  • Для массива элементов: FREQ должен находиться в диапазоне частот элементов, составляющих массив. В противном случае массив не выдает отклик, и направление возвращается как –Inf.

Пример: [1e8 2e6]

Типы данных: double

Азимутальные углы для вычисления направленности и шаблона, заданные как 1-by-N действительный вектор строки, где N - число азимутальных углов. Угловые единицы в градусах. Азимутальные углы должны лежать между -180 ° и 180 °.

Азимутальный угол - это угол между осью x и проекцией вектора направления на плоскость xy. При измерении от оси X к оси Y этот угол является положительным.

Пример: [-45:2:45]

Типы данных: double

Углы возвышения для вычисления направленности и шаблона, заданные как 1-by-M действительный вектор строки, где М - количество требуемых направлений возвышения. Угловые единицы в градусах. Угол возвышения должен лежать между -90 ° и 90 °.

Угол места - это угол между вектором направления и плоскостью xy. При измерении по направлению к оси Z угол наклона является положительным.

Пример: [-75:1:70]

Типы данных: double

Аргументы пары «имя-значение»

Укажите дополнительные пары, разделенные запятыми Name,Value аргументы. Name является именем аргумента и Value - соответствующее значение. Name должен отображаться внутри кавычек. Можно указать несколько аргументов пары имен и значений в любом порядке как Name1,Value1,...,NameN,ValueN.

Печать системы координат массива, заданной как разделенная запятыми пара, состоящая из 'CoordinateSystem' и один из 'polar', 'rectangular', или 'uv'. Когда 'CoordinateSystem' имеет значение 'polar' или 'rectangular', AZ и EL аргументы задают азимут и отметку образца соответственно. AZ значения должны лежать между -180 ° и 180 °.EL значения должны лежать между -90 ° и 90 °. Если'CoordinateSystem' имеет значение 'uv', AZ и EL затем укажите координаты U и V соответственно. AZ и EL должно лежать между -1 и 1.

Пример: 'uv'

Типы данных: char

Отображаемый тип шаблона, указанный как пара, разделенная запятыми, состоящая из 'Type' и один из

  • 'directivity' - диаграмма направленности, измеренная в дБи.

  • 'efield' - схема поля датчика или матрицы. Для акустических датчиков отображаемый шаблон предназначен для скалярного звукового поля.

  • 'power' - модель мощности датчика или матрицы, определенной как квадрат модели поля.

  • 'powerdb' - модель мощности, преобразованная в дБ.

Пример: 'powerdb'

Типы данных: char

Отображение нормализованного шаблона, заданного как разделенная запятыми пара, состоящая из 'Normalizeи логическое значение. Задайте для этого параметра значение true для отображения нормализованного массива. Этот параметр не применяется при установке 'Type' кому 'directivity'. Шаблоны направленности уже нормализованы.

Типы данных: logical

Стиль печати, заданный как разделенная запятыми пара, состоящая из 'Plotstyle' и либо 'overlay' или 'waterfall'. Этот параметр применяется при указании нескольких частот в FREQ на 2-D участках. Можно рисовать 2-D графики, задав один из аргументов AZ или EL в скаляр.

Типы данных: char

Поляризованный компонент поля для отображения, указанный как разделенная запятыми пара, состоящая из «поляризации» и 'combined', 'H', или 'V'. Этот параметр применяется только тогда, когда датчики способны к поляризации и когда 'Type' параметр не установлен в значение 'directivity'. В этой таблице показано значение параметров отображения.

'Polarization'Показ
'combined'Комбинированные компоненты поляризации H и V
'H'Компонент поляризации H
'V'Компонент поляризации V

Пример: 'V'

Типы данных: char

Скорость распространения сигнала, указанная как разделенная запятыми пара, состоящая из 'PropagationSpeed' и положительный скаляр в метрах в секунду.

Пример: 'PropagationSpeed',physconst('LightSpeed')

Типы данных: double

Веса субчипов, указанные как разделенная запятыми пара, состоящая из 'Weightsи N-by-1 вектор-столбец с комплексными значениями или N-на-М матрицу с комплексными значениями. Размерность N - это количество субчипов в массиве. Размерность L - это количество частот, заданное параметром FREQ аргумент.

Weights измерениеFREQ измерениеЦель
N-by-1 вектор столбца с комплексными значениямиСкалярный или 1-by-L вектор строкиПрименяет набор весов для одной частоты или для всех L частот.
N-на-L комплекснозначная матрица1-by-L вектор строкиПрименяет каждый из столбцов L ‘Weights’ для соответствующей частоты в FREQ аргумент.

Пример: 'Weights',ones(N,M)

Типы данных: double

Угол поворота подматрицы, заданный как разделенная запятыми пара, состоящая из 'SteerAngle' и скаляр или вектор столбца 2 на 1.

Если 'SteerAngle' является вектором столбца 2 на 1, он имеет вид [azimuth; elevation]. Азимутальный угол должен быть от -180 ° до 180 ° включительно. Угол возвышения должен быть от -90 ° до 90 ° включительно.

Если 'SteerAngle' является скаляром и задает только азимутальный угол. В этом случае предполагается, что угол возвышения равен 0.

Этот параметр применяется только в том случае, если 'SubarraySteering' свойство объекта System имеет значение 'Phase' или 'Time'.

Пример: 'SteerAngle',[20;30]

Типы данных: double

Веса элементов субчипов, заданные как матрица NSE-by-N с комплексными значениями или массив ячеек 1-by-N. Веса применяются к отдельным элементам в пределах подрешетки. Субчипы могут иметь различные размеры и размеры.

Если ElementWeights является комплекснозначной матрицей NSE-by-N, NSE - количество элементов в наибольшем подрешётке и N - количество подрешеток. Каждый столбец матрицы определяет весовые коэффициенты для соответствующего подмассива. В качестве весов применяются только первые K элементов в каждом столбце, где K - количество элементов в соответствующем подчищении.

Если ElementWeights является массивом 1-by-N ячеек. Каждая ячейка содержит вектор столбца с комплексными значениями весов для соответствующего подрешетки. Векторы столбцов имеют длины, равные количеству элементов в соответствующем подрешетке.

Зависимости

Чтобы включить эту пару имя-значение, установите SubarraySteering свойство массива to 'Custom'.

Типы данных: double
Поддержка комплексного номера: Да

Выходные аргументы

развернуть все

Массив, возвращаемый в виде вещественной матрицы M-by-N. Размеры PAT соответствуют измерениям выходных аргументов AZ_ANG и EL_ANG.

Азимутальные углы для отображения направленности или образца отклика, возвращаемые как скалярный или 1-by-N действительный вектор строки, соответствующий размерному набору в AZ. Столбцы PAT соответствуют значениям в AZ_ANG. Единицы измерения в градусах.

Углы возвышения для отображения направленности или отклика, возвращаемые как скалярный или 1-by-M действительный вектор строки, соответствующий размерному набору в EL. Строки PAT соответствуют значениям в EL_ANG. Единицы измерения в градусах.

Примеры

развернуть все

Постройте график азимутальной характеристики 4-элементного ULA, разделенного на два 2-элементных ULA. Расстояние между элементами составляет половину длины волны.

Создайте ULA и разделите ее на два двухэлементных ULA.

sULA = phased.ULA('NumElements',4,'ElementSpacing',0.5);
sPA = phased.PartitionedArray('Array',sULA,...
    'SubarraySelection',[1 1 0 0;0 0 1 1]);

Постройте график отклика массива по азимуту. Предположим, что рабочая частота равна 1 ГГц, а скорость распространения - это скорость света.

fc = 1e9;
pattern(sPA,fc,[-180:180],0,'Type','powerdb',...
    'CoordinateSystem','polar',...
    'Normalize',true)

Преобразуйте 2 на 6 URA изотропных антенных элементов в 1 на 3 разделенную решетку так, чтобы каждая подрешетка разделенной решетки была 2 на 2 URA. Предположим, что частотная характеристика элементов лежит между 1 и 6 ГГц. Элементы разнесены на половину длины волны, соответствующей наибольшей частоте отклика элемента. Постройте график отсечения азимута от -50 до 50 градусов для различных двух наборов весов. Для секционированных массивов вместо элементов к субчипам применяются веса.

Создание секционированного массива

fmin = 1e9;
fmax = 6e9;
c = physconst('LightSpeed');
lam = c/fmax;
sIso = phased.IsotropicAntennaElement(...
    'FrequencyRange',[fmin,fmax],...
    'BackBaffled',false);
sURA = phased.URA('Element',sIso,'Size',[2,6],...
    'ElementSpacing',[lam/2,lam/2]);
subarraymap = [[1,1,1,1,0,0,0,0,0,0,0,0];...
    [0,0,0,0,1,1,1,1,0,0,0,0];...
    [0,0,0,0,0,0,0,0,1,1,1,1]];
sPA = phased.PartitionedArray('Array',sURA,...
    'SubarraySelection',subarraymap);

Печать модели мощности

Постройте график отклика массива на частоте 5 ГГц в ограниченном диапазоне азимутальных углов.

fc = 5e9;
wts = [[1,1,1]',[.862,1.23,.862]'];
pattern(sPA,fc,[-50:0.1:50],0,...
    'Type','powerdb',...
    'CoordinateSystem','polar',...
    'Weights',wts)

График реакции показывает расширение основного лепестка и снижение прочности боковых лепестков, вызванное сужением веса.

Направление графика

Постройте график азимутального разреза направленности массива на частоте 5 ГГц в ограниченном диапазоне азимутальных углов для двух различных наборов весов.

fc = 5e9;
wts = [[1,1,1]',[.862,1.23,.862]'];
pattern(sPA,fc,[-50:0.1:50],0,...
    'Type','directivity',...
    'CoordinateSystem','rectangular',...
    'Weights',wts)

Figure contains an axes. The axes with title Azimuth Cut (elevation angle = 0.0°) contains 2 objects of type line. These objects represent Weights 1, Weights 2.

Подробнее

развернуть все

Представлен в R2015a