exponenta event banner

потеря

Класс: Линейный

Потеря классификации для линейных классификационных моделей

Описание

пример

L = loss(Mdl,X,Y) возвращает потери классификации для двоичной линейной модели классификации Mdl использование данных предиктора в X и соответствующие метки классов в Y. L содержит коэффициенты ошибок классификации для каждого уровня регуляризации в Mdl.

L = loss(Mdl,Tbl,ResponseVarName) возвращает потери классификации для данных предиктора в Tbl и метки истинного класса в Tbl.ResponseVarName.

L = loss(Mdl,Tbl,Y) возвращает потери классификации для данных предиктора в таблице Tbl и метки истинного класса в Y.

пример

L = loss(___,Name,Value) указывает параметры, использующие один или несколько аргументов пары имя-значение в дополнение к любой из комбинаций входных аргументов в предыдущих синтаксисах. Например, можно указать, что столбцы в данных предиктора соответствуют наблюдениям, или указать функцию потери классификации.

Входные аргументы

развернуть все

Двоичная, линейная классификационная модель, заданная как ClassificationLinear объект модели. Можно создать ClassificationLinear объект модели с использованием fitclinear.

Данные предиктора, заданные как полная или разреженная матрица n-by-p. Эта ориентация X указывает, что строки соответствуют отдельным наблюдениям, а столбцы - отдельным переменным предиктора.

Примечание

Если вы ориентируете матрицу предиктора так, чтобы наблюдения соответствовали столбцам, и укажите 'ObservationsIn','columns', то вы можете испытать значительное сокращение времени вычислений.

Длина Y и число замечаний в X должно быть равным.

Типы данных: single | double

Метки класса, указанные как категориальный, символьный или строковый массив; логический или числовой вектор; или массив ячеек символьных векторов.

  • Тип данных Y должен совпадать с типом данных Mdl.ClassNames. (Программа рассматривает строковые массивы как массивы ячеек символьных векторов.)

  • Отдельные классы в Y должен быть подмножеством Mdl.ClassNames.

  • Если Y является символьным массивом, то каждый элемент должен соответствовать одной строке массива.

  • Длина Y должно быть равно количеству наблюдений в X или Tbl.

Типы данных: categorical | char | string | logical | single | double | cell

Образец данных, используемых для обучения модели, указанный как таблица. Каждая строка Tbl соответствует одному наблюдению, и каждый столбец соответствует одной прогнозирующей переменной. Дополнительно, Tbl может содержать дополнительные столбцы для переменной ответа и весов наблюдения. Tbl должен содержать все предикторы, используемые для обучения Mdl. Многозначные переменные и массивы ячеек, отличные от массивов ячеек символьных векторов, не допускаются.

Если Tbl содержит переменную ответа, используемую для обучения Mdl, то указывать не нужно ResponseVarName или Y.

Если вы тренируетесь Mdl используя образцы данных, содержащиеся в таблице, затем входные данные для loss также должен находиться в таблице.

Имя переменной ответа, указанное как имя переменной в Tbl. Если Tbl содержит переменную ответа, используемую для обучения Mdl, то указывать не нужно ResponseVarName.

При указании ResponseVarName, то необходимо указать его как вектор символа или скаляр строки. Например, если переменная ответа сохранена как Tbl.Y, затем укажите ResponseVarName как 'Y'. В противном случае программа обрабатывает все столбцы Tbl, в том числе Tbl.Y, как предикторы.

Переменная ответа должна быть категориальным, символьным или строковым массивом; логический или числовой вектор; или массив ячеек символьных векторов. Если ответная переменная является символьным массивом, то каждый элемент должен соответствовать одной строке массива.

Типы данных: char | string

Аргументы пары «имя-значение»

Укажите дополнительные пары, разделенные запятыми Name,Value аргументы. Name является именем аргумента и Value - соответствующее значение. Name должен отображаться внутри кавычек. Можно указать несколько аргументов пары имен и значений в любом порядке как Name1,Value1,...,NameN,ValueN.

Функция потерь, заданная как разделенная запятыми пара, состоящая из 'LossFun' и встроенный дескриптор функции или имени функции потери.

  • В следующей таблице перечислены доступные функции потерь. Укажите его с помощью соответствующего вектора символа или скаляра строки.

    СтоимостьОписание
    'binodeviance'Биномиальное отклонение
    'classiferror'Неверно классифицированная скорость в десятичной
    'exponential'Экспоненциальные потери
    'hinge'Потеря шарнира
    'logit'Логистические потери
    'mincost'Минимальная ожидаемая стоимость неправильной классификации (для классификационных оценок, которые являются задними вероятностями)
    'quadratic'Квадратичные потери

    'mincost' подходит для классификационных оценок, которые являются задними вероятностями. Для моделей линейной классификации учащиеся логистической регрессии по умолчанию возвращают апостериорные вероятности в качестве классификационных баллов, а учащиеся SVM - нет (см. predict).

  • Чтобы указать пользовательскую функцию потери, используйте функцию дескриптора нотации. Функция должна иметь следующую форму:

    lossvalue = lossfun(C,S,W,Cost)

    • Выходной аргумент lossvalue является скаляром.

    • Указывается имя функции (lossfun).

    • C является nоколо-K логическая матрица со строками, указывающими класс, которому принадлежит соответствующее наблюдение. n - количество наблюдений в Tbl или X, и K - количество различных классов (numel(Mdl.ClassNames). Порядок столбцов соответствует порядку классов в Mdl.ClassNames. Создать C путем установки C(p,q) = 1, если наблюдение p находится в классе q, для каждой строки. Установка всех остальных элементов строки p кому 0.

    • S является nоколо-K числовая матрица классификационных баллов. Порядок столбцов соответствует порядку классов в Mdl.ClassNames. S - матрица классификационных баллов, аналогичная выходному результату predict.

    • W является n-по-1 числовой вектор весов наблюдения.

    • Cost является Kоколо-K числовая матрица затрат на неправильную классификацию. Например, Cost = ones(K) – eye(K) указывает стоимость 0 для правильной классификации и 1 для неправильной классификации.

Пример: 'LossFun',@lossfun

Типы данных: char | string | function_handle

Измерение наблюдения данных предиктора, указанное как 'rows' или 'columns'.

Примечание

Если вы ориентируете матрицу предиктора так, чтобы наблюдения соответствовали столбцам, и укажите 'ObservationsIn','columns', то вы можете испытать значительное сокращение времени вычислений. Невозможно указать 'ObservationsIn','columns' для данных предиктора в таблице.

Типы данных: char | string

Веса наблюдения, указанные как разделенная запятыми пара, состоящая из 'Weights' и числовой вектор или имя переменной в Tbl.

  • При указании Weights как числовой вектор, то размер Weights должно быть равно количеству наблюдений в X или Tbl.

  • При указании Weights как имя переменной в Tbl, то имя должно быть символьным вектором или строковым скаляром. Например, если веса сохранены как Tbl.W, затем укажите Weights как 'W'. В противном случае программа обрабатывает все столбцы Tbl, в том числе Tbl.W, как предикторы.

Если вы поставляете веса, то для каждой силы регуляризации, loss вычисляет взвешенные потери классификации и нормализует веса для суммирования со значением предшествующей вероятности в соответствующем классе.

Типы данных: double | single

Выходные аргументы

развернуть все

Потери классификации, возвращаемые в виде числового скалярного вектора или вектора строки. Толкование L зависит от Weights и LossFun.

L имеет тот же размер, что и Mdl.Lambda. L(j) - потеря классификации модели линейной классификации, обученной с использованием силы регуляризации Mdl.Lambda(j).

Примеры

развернуть все

Загрузите набор данных NLP.

load nlpdata

X является разреженной матрицей данных предиктора, и Y является категориальным вектором меток класса. В данных имеется более двух классов.

Модели должны определять, содержится ли подсчет слов на веб-странице в документации Toolbox™ статистики и машинного обучения. Таким образом, определите метки, соответствующие страницам документации Toolbox™ статистики и машинного обучения.

Ystats = Y == 'stats';

Обучайте модель двоичной линейной классификации, которая может определить, находится ли подсчет слов на веб-странице документации из документации Toolbox™ статистики и машинного обучения. Укажите, чтобы удерживать 30% наблюдений. Оптимизируйте целевую функцию с помощью SpaRSA.

rng(1); % For reproducibility 
CVMdl = fitclinear(X,Ystats,'Solver','sparsa','Holdout',0.30);
CMdl = CVMdl.Trained{1};

CVMdl является ClassificationPartitionedLinear модель. Он содержит свойство Trained, который представляет собой массив ячеек 1 на 1, содержащий ClassificationLinear модель, которую программное обеспечение обучило с использованием обучающего набора.

Извлеките данные обучения и тестирования из определения раздела.

trainIdx = training(CVMdl.Partition);
testIdx = test(CVMdl.Partition);

Оценка ошибки классификации обучающих и тестовых образцов.

ceTrain = loss(CMdl,X(trainIdx,:),Ystats(trainIdx))
ceTrain = 1.3572e-04
ceTest = loss(CMdl,X(testIdx,:),Ystats(testIdx))
ceTest = 5.2804e-04

Потому что есть одна сила регуляризации в CMdl, ceTrain и ceTest числовые скаляры.

Загрузите набор данных NLP. Выполните предварительную обработку данных, как указано в разделе Оценка потерь при классификации теста-выборки, и перенесите данные предиктора.

load nlpdata
Ystats = Y == 'stats';
X = X';

Обучить двоичную линейную классификационную модель. Укажите, чтобы удерживать 30% наблюдений. Оптимизируйте целевую функцию с помощью SpaRSA. Укажите, что наблюдения предиктора соответствуют столбцам.

rng(1); % For reproducibility 
CVMdl = fitclinear(X,Ystats,'Solver','sparsa','Holdout',0.30,...
    'ObservationsIn','columns');
CMdl = CVMdl.Trained{1};

CVMdl является ClassificationPartitionedLinear модель. Он содержит свойство Trained, который представляет собой массив ячеек 1 на 1, содержащий ClassificationLinear модель, которую программное обеспечение обучило с использованием обучающего набора.

Извлеките данные обучения и тестирования из определения раздела.

trainIdx = training(CVMdl.Partition);
testIdx = test(CVMdl.Partition);

Создайте анонимную функцию, измеряющую линейные потери, т. е.

L=∑j-wjyjfj∑jwj.

wj - вес для наблюдения j, yj - ответ j (-1 для отрицательного класса и 1 в противном случае), и fj - необработанный классификационный балл наблюдения j. Пользовательские функции потери должны быть написаны в определенной форме. Правила записи пользовательской функции потери см. в разделе LossFun аргумент пары имя-значение.

linearloss = @(C,S,W,Cost)sum(-W.*sum(S.*C,2))/sum(W);

Оценка потерь при классификации учебных и тестовых проб с использованием функции линейных потерь.

ceTrain = loss(CMdl,X(:,trainIdx),Ystats(trainIdx),'LossFun',linearloss,...
    'ObservationsIn','columns')
ceTrain = -7.8330
ceTest = loss(CMdl,X(:,testIdx),Ystats(testIdx),'LossFun',linearloss,...
    'ObservationsIn','columns')
ceTest = -7.7383

Чтобы определить хорошую силу лассо-штрафа для модели линейной классификации, которая использует учащегося логистической регрессии, сравните коэффициенты ошибок классификации тестовой выборки.

Загрузите набор данных NLP. Выполните предварительную обработку данных, как указано в разделе «Пользовательская потеря классификации».

load nlpdata
Ystats = Y == 'stats';
X = X'; 

rng(10); % For reproducibility
Partition = cvpartition(Ystats,'Holdout',0.30);
testIdx = test(Partition);
XTest = X(:,testIdx);
YTest = Ystats(testIdx);

Создайте набор из 11 логарифмически разнесенных уровней регуляризации от 10-6 до 10-0,5.

Lambda = logspace(-6,-0.5,11);

Обучайте бинарные, линейные модели классификации, которые используют каждую из сильных сторон регуляризации. Оптимизируйте целевую функцию с помощью SpaRSA. Понизить допуск на градиенте целевой функции до 1e-8.

CVMdl = fitclinear(X,Ystats,'ObservationsIn','columns',...
    'CVPartition',Partition,'Learner','logistic','Solver','sparsa',...
    'Regularization','lasso','Lambda',Lambda,'GradientTolerance',1e-8)
CVMdl = 
  ClassificationPartitionedLinear
    CrossValidatedModel: 'Linear'
           ResponseName: 'Y'
        NumObservations: 31572
                  KFold: 1
              Partition: [1x1 cvpartition]
             ClassNames: [0 1]
         ScoreTransform: 'none'


  Properties, Methods

Извлеките обученную модель линейной классификации.

Mdl = CVMdl.Trained{1}
Mdl = 
  ClassificationLinear
      ResponseName: 'Y'
        ClassNames: [0 1]
    ScoreTransform: 'logit'
              Beta: [34023x11 double]
              Bias: [1x11 double]
            Lambda: [1x11 double]
           Learner: 'logistic'


  Properties, Methods

Mdl является ClassificationLinear объект модели. Поскольку Lambda - это последовательность сильных сторон регуляризации, вы можете думать о Mdl как 11 моделей, по одной для каждой силы регуляризации в Lambda.

Оцените ошибку классификации тестового образца.

ce = loss(Mdl,X(:,testIdx),Ystats(testIdx),'ObservationsIn','columns');

Потому что есть 11 сильных сторон регуляризации, ce является вектором 1 на 11 коэффициентов ошибок классификации.

Более высокие значения Lambda привести к предикторной переменной разреженности, которая является хорошим качеством классификатора. Для каждой силы регуляризации выполните обучение модели линейной классификации, используя весь набор данных и те же опции, что и при перекрестной проверке моделей. Определите количество ненулевых коэффициентов на модель.

Mdl = fitclinear(X,Ystats,'ObservationsIn','columns',...
    'Learner','logistic','Solver','sparsa','Regularization','lasso',...
    'Lambda',Lambda,'GradientTolerance',1e-8);
numNZCoeff = sum(Mdl.Beta~=0);

На том же рисунке постройте график коэффициентов ошибок тестовой выборки и частоты ненулевых коэффициентов для каждой силы регуляризации. Постройте график всех переменных на шкале журнала.

figure;
[h,hL1,hL2] = plotyy(log10(Lambda),log10(ce),...
    log10(Lambda),log10(numNZCoeff + 1)); 
hL1.Marker = 'o';
hL2.Marker = 'o';
ylabel(h(1),'log_{10} classification error')
ylabel(h(2),'log_{10} nonzero-coefficient frequency')
xlabel('log_{10} Lambda')
title('Test-Sample Statistics')
hold off

Figure contains 2 axes. Axes 1 with title Test-Sample Statistics contains an object of type line. Axes 2 contains an object of type line.

Выберите индекс силы регуляризации, который уравновешивает предикторную переменную разреженность и низкую ошибку классификации. В этом случае должно быть достаточно значения от 10-4 до 10-1.

idxFinal = 7;

Выберите модель из Mdl с выбранной силой регуляризации.

MdlFinal = selectModels(Mdl,idxFinal);

MdlFinal является ClassificationLinear модель, содержащая одну силу регуляризации. Чтобы оценить метки для новых наблюдений, передайте MdlFinal и новые данные для predict.

Подробнее

развернуть все

Алгоритмы

По умолчанию веса наблюдения являются вероятностями предыдущего класса. При поставке весов с использованием Weightsзатем программное обеспечение нормализует их для суммирования с предшествующими вероятностями в соответствующих классах. Программа использует перенормированные веса для оценки взвешенных потерь классификации.

Расширенные возможности

Представлен в R2016a