В этом примере показано, как работать с подгонкой поверхности.
load franke; surffit = fit([x,y],z,'poly23','normalize','on')
Linear model Poly23: surffit(x,y) = p00 + p10*x + p01*y + p20*x^2 + p11*x*y + p02*y^2 + p21*x^2*y + p12*x*y^2 + p03*y^3 where x is normalized by mean 1982 and std 868.6 and where y is normalized by mean 0.4972 and std 0.2897 Coefficients (with 95% confidence bounds): p00 = 0.4253 (0.3928, 0.4578) p10 = -0.106 (-0.1322, -0.07974) p01 = -0.4299 (-0.4775, -0.3822) p20 = 0.02104 (0.001457, 0.04062) p11 = 0.07153 (0.05409, 0.08898) p02 = -0.03084 (-0.05039, -0.01129) p21 = 0.02091 (0.001372, 0.04044) p12 = -0.0321 (-0.05164, -0.01255) p03 = 0.1216 (0.09929, 0.1439)
На выходе отображаются подобранные модели уравнение, подобранные коэффициенты и доверие границы для подобранных коэффициентов.
plot(surffit,[x,y],z)
Постройте график подгонки невязок.
plot(surffit,[x,y],z,'Style','Residuals')
Постройте графики границ предсказания на подгонку.
plot(surffit,[x,y],z,'Style','predfunc')
Рассчитать подгонку в определенной точке путем определения значения для x
и y
, используя эту форму: z = fittedmodel(x,y)
.
surffit(1000,0.5)
ans = 0.5673
xi = [500;1000;1200]; yi = [0.7;0.6;0.5]; surffit(xi,yi)
ans = 3×1
0.3771
0.4064
0.5331
Получите предсказание ограничения на эти значения.
[ci, zi] = predint(surffit,[xi,yi])
ci = 3×2
0.0713 0.6829
0.1058 0.7069
0.2333 0.8330
zi = 3×1
0.3771
0.4064
0.5331
Введите имя модели для отображения уравнения модели, подобранных коэффициентов и доверительных границ для подобранных коэффициентов.
surffit
Linear model Poly23: surffit(x,y) = p00 + p10*x + p01*y + p20*x^2 + p11*x*y + p02*y^2 + p21*x^2*y + p12*x*y^2 + p03*y^3 where x is normalized by mean 1982 and std 868.6 and where y is normalized by mean 0.4972 and std 0.2897 Coefficients (with 95% confidence bounds): p00 = 0.4253 (0.3928, 0.4578) p10 = -0.106 (-0.1322, -0.07974) p01 = -0.4299 (-0.4775, -0.3822) p20 = 0.02104 (0.001457, 0.04062) p11 = 0.07153 (0.05409, 0.08898) p02 = -0.03084 (-0.05039, -0.01129) p21 = 0.02091 (0.001372, 0.04044) p12 = -0.0321 (-0.05164, -0.01255) p03 = 0.1216 (0.09929, 0.1439)
Чтобы получить только уравнение модели, используйте formula
.
formula(surffit)
ans = 'p00 + p10*x + p01*y + p20*x^2 + p11*x*y + p02*y^2 + p21*x^2*y + p12*x*y^2 + p03*y^3'
Задайте коэффициент по имени.
p00 = surffit.p00
p00 = 0.4253
p03 = surffit.p03
p03 = 0.1216
Получите все имена коэффициентов. Посмотрите на уравнение аппроксимации (для примера, f(x,y) = p00 + p10*x...
), чтобы увидеть условия модели для каждого коэффициента.
coeffnames(surffit)
ans = 9x1 cell
{'p00'}
{'p10'}
{'p01'}
{'p20'}
{'p11'}
{'p02'}
{'p21'}
{'p12'}
{'p03'}
Получите все значения коэффициентов.
coeffvalues(surffit)
ans = 1×9
0.4253 -0.1060 -0.4299 0.0210 0.0715 -0.0308 0.0209 -0.0321 0.1216
Используйте доверительные ограничения коэффициентов, чтобы помочь вам оценить и сравнить подгонки. Доверительные ограничения коэффициентов определяют их точность. Границы, которые находятся далеко друг от друга, указывают на неопределенность. Если границы пересекают ноль для линейных коэффициентов, это означает, что вы не можете быть уверены, что эти коэффициенты отличаются от нуля. Если некоторые условия модели имеют коэффициенты нуля, то они не помогают с подгонкой.
confint(surffit)
ans = 2×9
0.3928 -0.1322 -0.4775 0.0015 0.0541 -0.0504 0.0014 -0.0516 0.0993
0.4578 -0.0797 -0.3822 0.0406 0.0890 -0.0113 0.0404 -0.0126 0.1439
Перечислите каждый метод, который можно использовать с подгонкой.
methods(surffit)
Methods for class sfit: argnames dependnames indepnames predint sfit category differentiate islinear probnames type coeffnames feval numargs probvalues coeffvalues fitoptions numcoeffs quad2d confint formula plot setoptions
Используйте help
команда, чтобы узнать, как использовать метод аппроксимации.
help sfit/quad2d
QUAD2D Numerically integrate a surface fit object. Q = QUAD2D(FO, A, B, C, D) approximates the integral of the surface fit object FO over the planar region A <= x <= B and C(x) <= y <= D(x). C and D may each be a scalar, a function handle or a curve fit (CFIT) object. [Q,ERRBND] = QUAD2D(...) also returns an approximate upper bound on the absolute error, ERRBND. [Q,ERRBND] = QUAD2D(FUN,A,B,C,D,PARAM1,VAL1,PARAM2,VAL2,...) performs the integration with specified values of optional parameters. See QUAD2D for details of the upper bound and the optional parameters. See also: QUAD2D, FIT, SFIT, CFIT. Documentation for sfit/quad2d doc sfit/quad2d