globalMaxPooling3dLayer

3-D глобальный слой максимального объединения

Описание

Слой 3-D глобального максимального объединения выполняет понижающую дискретизацию, вычисляя максимальное значение высоты, ширины и размерностей глубины входа.

Создание

Описание

layer = globalMaxPooling3dLayer создает 3-D глобальный слой максимального объединения.

пример

layer = globalMaxPooling3dLayer('Name',name) устанавливает дополнительный Name свойство.

Свойства

расширить все

Имя слоя, заданное как вектор символов или строковый скаляр. Чтобы включить слой в график слоев, необходимо задать непустое уникальное имя слоя. Если вы обучаете последовательную сеть с слоем и Name установлено в ''затем программа автоматически присваивает слою имя во время обучения.

Типы данных: char | string

Количество входов слоя. Этот слой принимает только один вход.

Типы данных: double

Входные имена слоя. Этот слой принимает только один вход.

Типы данных: cell

Количество выходов слоя. Этот слой имеет только один выход.

Типы данных: double

Выходные имена слоя. Этот слой имеет только один выход.

Типы данных: cell

Функции объекта

Примеры

свернуть все

Создайте 3-D глобальный слой максимального объединения с 'gmp1' имен.

layer = globalMaxPooling3dLayer('Name','gmp1')
layer = 
  GlobalMaxPooling3DLayer with properties:

    Name: 'gmp1'

Включите 3-D максимальный слой объединения в Layer массив.

layers = [ ...
    image3dInputLayer([28 28 28 3])
    convolution3dLayer(5,20)
    reluLayer
    globalMaxPooling3dLayer
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer]
layers = 
  7x1 Layer array with layers:

     1   ''   3-D Image Input          28x28x28x3 images with 'zerocenter' normalization
     2   ''   Convolution              20 5x5x5 convolutions with stride [1  1  1] and padding [0  0  0; 0  0  0]
     3   ''   ReLU                     ReLU
     4   ''   3-D Global Max Pooling   3-D global max pooling
     5   ''   Fully Connected          10 fully connected layer
     6   ''   Softmax                  softmax
     7   ''   Classification Output    crossentropyex

Совет

  • В сети классификации изображений можно использовать globalMaxPooling3dLayer перед конечным полносвязным слоем для уменьшения размера активаций без ущерба эффективность. Уменьшенный размер активаций означает, что нижестоящие полносвязные слои будут иметь меньше весов, уменьшая размер вашей сети.

  • Можно использовать globalMaxPooling3dLayer к концу сети классификации вместо fullyConnectedLayer. Поскольку слои глобального объединения не имеют настраиваемых параметров, они могут быть менее склонны к сверхподбору кривой и могут уменьшить размер сети. Эти сети также могут быть более устойчивыми к пространственным преобразованиям входных данных. Можно также заменить полносвязный слой на globalAveragePooling3dLayer вместо этого. Является ли globalAveragPooling3dLayer или globalMaxPooling3dLayer Это более уместно в зависимости от вашего набора данных.

    Чтобы использовать глобальный средний слой объединения вместо полносвязного слоя, размер входа globalMaxPooling3dLayer должен совпадать с количеством классов в задаче классификации

Введенный в R2020a