kfoldEdge

Классификационные ребра для перекрестно проверенной модели ECOC ядра

Описание

пример

edge = kfoldEdge(CVMdl) возвращает ребро классификации, полученный перекрестной проверенной моделью ECOC ядра (ClassificationPartitionedKernelECOC) CVMdl. Для каждой складки, kfoldEdge вычисляет ребро классификации для наблюдений с гибкой валидации, используя модель, обученную наблюдениям с гибкой обучения.

edge = kfoldEdge(CVMdl,Name,Value) возвращает ребро классификации с дополнительными опциями, заданными одним или несколькими аргументами пары "имя-значение". Для примера задайте количество складок, схему декодирования или уровень подробностей.

Примеры

свернуть все

Загрузите набор данных радужки Фишера. X содержит измерения цветов и Y содержит имена видов цветов.

load fisheriris
X = meas;
Y = species;

Перекрестная проверка модели ECOC, состоящей из двоичных учащихся ядра.

CVMdl = fitcecoc(X,Y,'Learners','kernel','CrossVal','on')
CVMdl = 
  ClassificationPartitionedKernelECOC
    CrossValidatedModel: 'KernelECOC'
           ResponseName: 'Y'
        NumObservations: 150
                  KFold: 10
              Partition: [1x1 cvpartition]
             ClassNames: {'setosa'  'versicolor'  'virginica'}
         ScoreTransform: 'none'


  Properties, Methods

CVMdl является ClassificationPartitionedKernelECOC модель. По умолчанию программное обеспечение реализует 10-кратную перекрестную валидацию. Чтобы задать другое количество складок, используйте 'KFold' аргумент пары "имя-значение" вместо 'Crossval'.

Оцените перекрестные проверенные ребра классификации.

edge = kfoldEdge(CVMdl)
edge = 0.4145

Кроме того, можно получить ребра в относительных единицах путем определения пары "имя-значение" 'Mode','individual' в kfoldEdge.

Выполните выбор признаков путем сравнения ребер k-складки из нескольких моделей. Исходя исключительно из этого критерия, классификатор с наибольшим ребром является лучшим классификатором.

Загрузите набор данных радужки Фишера. X содержит измерения цветов и Y содержит имена видов цветов.

load fisheriris
X = meas;
Y = species;

Случайным образом выберите половину переменных предиктора.

rng(1); % For reproducibility
p = size(X,2); % Number of predictors
idxPart = randsample(p,ceil(0.5*p));

Перекрестная проверка двух моделей ECOC, состоящих из моделей классификации ядра: одна, которая использует все предикторы, и одна, которая использует половину предикторов.

CVMdl = fitcecoc(X,Y,'Learners','kernel','CrossVal','on');
PCVMdl = fitcecoc(X(:,idxPart),Y,'Learners','kernel','CrossVal','on');

CVMdl и PCVMdl являются ClassificationPartitionedKernelECOC модели. По умолчанию программное обеспечение реализует 10-кратную перекрестную валидацию. Чтобы задать другое количество складок, используйте 'KFold' аргумент пары "имя-значение" вместо 'Crossval'.

Оцените ребро k-складки для каждого классификатора.

fullEdge = kfoldEdge(CVMdl)
fullEdge = 0.4092
partEdge = kfoldEdge(PCVMdl)
partEdge = 0.4161

Основываясь на ребрах k-складки, два классификатора сопоставимы.

Входные параметры

свернуть все

Перекрестная проверенная модель ECOC ядра, заданная как ClassificationPartitionedKernelECOC модель. Можно создать ClassificationPartitionedKernelECOC модель путем настройки модели ECOC с помощью fitcecoc и определение этих аргументов пары "имя-значение":

  • 'Learners'- Установите значение 'kernel', объект шаблона, возвращенный templateKernelили массив ячеек из таких объектов шаблона.

  • Один из аргументов 'CrossVal', 'CVPartition', 'Holdout', 'KFold', или 'Leaveout'.

Аргументы в виде пар имя-значение

Задайте необязательные разделенные разделенными запятой парами Name,Value аргументы. Name - имя аргумента и Value - соответствующее значение. Name должны находиться внутри кавычек. Можно задать несколько аргументов в виде пар имен и значений в любом порядке Name1,Value1,...,NameN,ValueN.

Пример: kfoldEdge(CVMdl,'BinaryLoss','hinge') задает 'hinge' как двоичная функция потерь учащегося.

Двоичная функция потерь учащегося, заданная как разделенная разделенными запятой парами, состоящая из 'BinaryLoss' и встроенное имя функции потери или указатель на функцию.

  • Эта таблица содержит имена и описания встроенных функций, где yj является меткой класса для конкретного двоичного ученика (в наборе {-1,1,0}), sj является счетом для j наблюдений и g (yj, sj) является формулой двоичных потерь.

    ЗначениеОписаниеСчетg (yj, sj)
    'binodeviance'Биномиальное отклонение(–∞,∞)log [1 + exp (-2 yjsj) ]/[ 2log (2)]
    'exponential'Экспоненциал(–∞,∞)exp (- yjsj )/2
    'hamming'Хэмминг[0,1] или (- ∞, ∞)[1 - знак (yjsj) ]/2
    'hinge'Стержень(–∞,∞)макс (0,1 - yjsj )/2
    'linear'Линейный(–∞,∞)(1 – yjsj)/2
    'logit'Логистический(–∞,∞)журнал [1 + exp (- yjsj) ]/[ 2log (2)]
    'quadratic'Квадратный[0,1][1 – yj (2 sj – 1)]2/2

    Программа нормализует двоичные потери так, что потеря составляет 0,5 при yj = 0. Кроме того, программное обеспечение вычисляет средние двоичные потери для каждого класса.

  • Для пользовательской функции двоичных потерь, например, customFunction, задайте его указатель на функцию 'BinaryLoss',@customFunction.

    customFunction имеет следующую форму:

    bLoss = customFunction(M,s)
    где:

    • M - K матрица кодирования L, сохраненная в Mdl.CodingMatrix.

    • s - вектор-строка L 1 байта классификационных баллов.

    • bLoss - классификационные потери. Этот скаляр агрегирует двоичные потери для каждого учащегося в конкретном классе. Для примера можно использовать среднее значение двоичных потерь для агрегирования потерь по учащимся для каждого класса.

    • K - количество классов.

    • L - это количество двоичных учащихся.

По умолчанию, если все двоичные ученики являются моделями классификации ядра с использованием SVM, то BinaryLoss является 'hinge'. Если все двоичные ученики являются моделями классификации ядра с помощью логистической регрессии, то BinaryLoss является 'quadratic'.

Пример: 'BinaryLoss','binodeviance'

Типы данных: char | string | function_handle

Схема декодирования, которая агрегирует двоичные потери, заданные как разделенная разделенными запятой парами, состоящая из 'Decoding' и 'lossweighted' или 'lossbased'. Для получения дополнительной информации смотрите Двоичные потери.

Пример: 'Decoding','lossbased'

Индексы сгиба для предсказания, заданные как разделенная разделенными запятой парами, состоящая из 'Folds' и числовой вектор положительных целых чисел. Элементы Folds должен находиться в области значений от 1 на CVMdl.KFold.

Программа использует только складки, указанные в Folds для предсказания.

Пример: 'Folds',[1 4 10]

Типы данных: single | double

Уровень агрегации для выхода, заданный как разделенная разделенными запятой парами, состоящая из 'Mode' и 'average' или 'individual'.

В этой таблице описываются значения.

ЗначениеОписание
'average'Выход является скаляром средним по всем складкам.
'individual'Выход является вектором длины k содержащим одно значение на складку, где k количество складок.

Пример: 'Mode','individual'

Опции оценки, заданные как разделенная разделенными запятой парами, состоящая из 'Options' и массив структур, возвращенный statset.

Чтобы вызвать параллельные вычисления:

  • Вам нужна лицензия Parallel Computing Toolbox™.

  • Задайте 'Options',statset('UseParallel',true).

Уровень подробностей, заданный как разделенная разделенными запятой парами, состоящая из 'Verbose' и 0 или 1. Verbose управляет количеством диагностических сообщений, которые программное обеспечение отображений в Командном окне.

Если Verbose является 0тогда программа не отображает диагностические сообщения. В противном случае программа отображает диагностические сообщения.

Пример: 'Verbose',1

Типы данных: single | double

Выходные аргументы

свернуть все

Классификационное ребро, возвращенный как числовой скаляр или числовой вектор-столбец.

Если Mode является 'average', затем edge - средняя классификация, ребро по всем складкам. В противном случае edge является k числовым вектором-1, содержащим ребро классификации для каждой складки, где k количество складок.

Подробнее о

свернуть все

Классификационное ребро

Это classification edge - средневзвешенное значение классификационных полей.

Один из способов выбрать один из нескольких классификаторов, например, для выбора признаков, - выбрать классификатор, который дает наибольшее ребро.

Классификационное поле

Для каждого наблюдения classification margin является различием между отрицательной потерей для истинного класса и максимальной отрицательной потерей среди ложных классов. Если поля находятся в одной шкале, то они служат классификационной доверительной мерой. Среди нескольких классификаторов лучше те, которые дают большую маржу.

Двоичные потери

binary loss является функцией класса и классификационной оценки, которая определяет, насколько хорошо двоичный ученик классифицирует наблюдение в класс.

Предположим следующее:

  • mkj является элементом (k, j) матрицы разработки кодирования M (то есть кода, соответствующего k классов двоичных j обучающегося).

  • sj - этот счет двоичных j учащихся для наблюдения.

  • g является функцией двоичных потерь.

  • k^ - предсказанный класс для наблюдения.

В loss-based decoding [Escalera et al.] класс, производящий минимальную сумму двоичных потерь по сравнению с двоичными учениками, определяет предсказанный класс наблюдения, то есть

k^=argminkj=1L|mkj|g(mkj,sj).

В loss-weighted decoding [Escalera et al.] класс, производящий минимальное среднее значение двоичных потерь по сравнению с двоичными учениками, определяет предсказанный класс наблюдения, то есть

k^=argminkj=1L|mkj|g(mkj,sj)j=1L|mkj|.

Allwein et al. предположим, что утраченное декодирование повышает точность классификации путем сохранения значений потерь для всех классов в одной динамической области значений.

В этой таблице приведены поддерживаемые функции потерь, где yj является меткой класса для конкретного двоичного обучающегося (в наборе {-1,1,0}), sj является счетом для j наблюдений и g (yj, sj).

ЗначениеОписаниеСчетg (yj, sj)
'binodeviance'Биномиальное отклонение(–∞,∞)log [1 + exp (-2 yjsj) ]/[ 2log (2)]
'exponential'Экспоненциал(–∞,∞)exp (- yjsj )/2
'hamming'Хэмминг[0,1] или (- ∞, ∞)[1 - знак (yjsj) ]/2
'hinge'Стержень(–∞,∞)макс (0,1 - yjsj )/2
'linear'Линейный(–∞,∞)(1 – yjsj)/2
'logit'Логистический(–∞,∞)журнал [1 + exp (- yjsj) ]/[ 2log (2)]
'quadratic'Квадратный[0,1][1 – yj (2 sj – 1)]2/2

Программа нормализует двоичные потери таким образом, что потеря составляет 0,5 при yj = 0, и агрегирует, используя среднее значение двоичных учащихся [Allwein et al.].

Не путайте двоичные потери с общими классификационными потерями (заданными 'LossFun' Аргумент пары "имя-значение" из loss и predict функции объекта), который измеряет, насколько хорошо классификатор ECOC работает в целом.

Ссылки

[1] Allwein, E., R. Schapire, and Y. Singer. «Сокращение многоклассового числа до двоичного: Унифицирующий подход к маржинальным classifiers». Журнал исследований машинного обучения. Том 1, 2000, стр. 113-141.

[2] Эскалера, С., О. Пужоль, и П. Радева. «О процессе декодирования в троичных выходных кодах с исправлением ошибок». Транзакции IEEE по шаблонному анализу и машинному анализу. Том 32, Выпуск 7, 2010, стр. 120-134.

[3] Эскалера, С., О. Пужоль, и П. Радева. «Разделяемость троичных кодов для разреженных проектов выходных кодов с исправлением ошибок». Pattern Recogn (Повторный вызов шаблона). Том 30, Выпуск 3, 2009, стр. 285-297.

Введенный в R2018b