Класс: GeneralizedLinearMixedModel
Оценки случайных эффектов и соответствующие статистические данные
[
возвращает любой из перечисленных выше выходных аргументов с помощью дополнительных опций, заданных одним или несколькими B
,BNames
,stats
]
= randomEffects(glme
,Name,Value
)Name,Value
аргументы в виде пар. Для примера можно задать уровень доверия интервала или метод для вычисления приблизительных степеней свободы.
glme
- Обобщенная линейная модель смешанных эффектовGeneralizedLinearMixedModel
объектОбобщенная модель линейных смешанных эффектов, заданная как GeneralizedLinearMixedModel
объект. Для свойств и методов этого объекта смотрите GeneralizedLinearMixedModel
.
Задайте необязательные разделенные разделенными запятой парами Name,Value
аргументы. Name
- имя аргумента и Value
- соответствующее значение. Name
должны находиться внутри кавычек. Можно задать несколько аргументов в виде пар имен и значений в любом порядке Name1,Value1,...,NameN,ValueN
.
'Alpha'
- Уровень значимостиУровень значимости, заданный как разделенная разделенными запятой парами, состоящая из 'Alpha'
и скалярное значение в области значений [0,1]. Для значения α доверительный уровень равен 100 × (1 - α)%.
Для примера для 99% интервалов доверия можно задать уровень доверия следующим образом.
Пример: 'Alpha',0.01
Типы данных: single
| double
'DFMethod'
- Метод вычисления приблизительных степеней свободы'residual'
(по умолчанию) | 'none'
Метод для вычисления приблизительных степеней свободы, заданный как разделенная запятыми пара, состоящая из 'DFMethod'
и одно из следующих.
Значение | Описание |
---|---|
'residual' | Степени свободы значения приняты постоянными и равными n - p, где n - количество наблюдений и p - количество фиксированных эффектов. |
'none' | Степени свободы заданы как бесконечность. |
Пример: 'DFMethod','none'
B
- Предполагаемые эмпирические предикторы Байеса для случайных эффектовПредполагаемые эмпирические предикторы Байеса (EBP) для случайных эффектов в обобщенной модели линейных смешанных эффектов glme
, возвращается как вектор-столбец. EBP в B
аппроксимируются модой эмпирического апостериорного распределения случайных эффектов с учетом оцененных ковариационных параметров и наблюдаемой реакции.
Предположим glme
имеет R сгруппированные переменные g1, g2..., g R, с уровнями <reservedrangesplaceholder9> 1, <reservedrangesplaceholder8> 2..., <reservedrangesplaceholder7> <reservedrangesplaceholder6>, соответственно. Также предположим, что q 1, q 2,..., q R являются длинами векторов со случайными эффектами, которые связаны с g1, g2,..., g R, соответственно. Затем, B
вектор - столбец длины <reservedrangesplaceholder7> 1* <reservedrangesplaceholder6> 1 + <reservedrangesplaceholder5> 2* <reservedrangesplaceholder4> 2 +... + <reservedrangesplaceholder3> <reservedrangesplaceholder2> * <reservedrangesplaceholder1> <reservedrangesplaceholder0>.
randomEffects
создает B
путем конкатенирования эмпирических предикторов Байеса векторов случайных эффектов, соответствующих каждому уровню каждой сгруппированной переменной как [g1level1; g1level2; ...; g1levelm1; g2level1; g2level2; ...; g2levelm2; ...; gRlevel1; gRlevel2; ...; gRlevelmR]'
.
BNames
- Имена коэффициентов случайных эффектовИмена коэффициентов случайных эффектов в B
, возвращается как таблица.
stats
- Предполагаемые эмпирические предикторы Байеса и связанные с ними статистические данныеПредполагаемые эмпирические предикторы Байеса (EBP) и связанная статистика для случайных эффектов в обобщенной модели линейных смешанных эффектов glme
, возвращается как таблица. stats
имеет по одной строке для каждого из случайных эффектов и по одному столбцу для каждой из следующих статистических данных.
Имя столбца | Описание |
---|---|
Group | Сгруппированная переменная, связанной со случайным эффектом |
Level | Уровень внутри сгруппированной переменной, соответствующий случайному эффекту |
Name | Имя коэффициента случайного эффекта |
Estimate | Эмпирический предиктор Байеса (EBP) случайного эффекта |
SEPred | Квадратный корень условной средней квадратичной невязки предсказания (CMSEP), заданные ковариационные параметры и ответ |
tStat | t -статистический для теста, что коэффициент случайных эффектов равен 0 |
DF | Предполагаемые степени свободы для t -статистического |
pValue | p -value для t -statistic |
Lower | Нижний предел интервала доверия 95% для коэффициента случайных эффектов |
Upper | Верхний предел интервала доверия 95% для коэффициента случайных эффектов |
randomEffects
вычисляет доверительные интервалы с использованием подхода условной средней квадратичной невязки предсказания (CMSEP), обусловленного предполагаемыми ковариационными параметрами и наблюдаемым ответом. Альтернативная интерпретация доверительных интервалов заключается в том, что они являются приблизительными байесовскими достоверными интервалами, обусловленными предполагаемыми ковариационными параметрами и наблюдаемой реакцией.
При подборе модели GLME используя fitglme
и один из методов подгонки псевдоправдоподобия ('MPL'
или 'REMPL'
), randomEffects
вычисляет доверительные интервалы и связанную статистику на основе подобранной модели линейных смешанных эффектов от окончательной итерации псевдоверий.
Загрузите выборочные данные.
load mfr
Эти моделируемые данные получены от производственной компании, которая управляет 50 заводами по всему миру, причем каждый завод выполняет пакетный процесс для создания готового продукта. Компания хочет уменьшить количество дефектов в каждой партии, поэтому разработала новый производственный процесс. Чтобы проверить эффективность нового процесса, компания выбрала 20 своих фабрик наугад для участия в эксперименте: Десять фабрик реализовали новый процесс, а другие десять продолжали запускать старый процесс. На каждом из 20 заводов компания запустила пять партий (в общей сложности 100 партий) и записала следующие данные:
Флаг, указывающий, использовал ли пакет новый процесс (newprocess
)
Время вычислений для каждой партии, в часах (time
)
Температура партии, в степенях Цельсия (temp
)
Категориальная переменная, указывающая на поставщика (A
, B
, или C
) химического вещества, используемого в партии (supplier
)
Количество дефектов в партии (defects
)
Данные также включают time_dev
и temp_dev
, которые представляют абсолютное отклонение времени и температуры, соответственно, от стандарта процесса в 3 часа при 20 степенях Цельсии.
Подбор обобщенной линейной модели смешанных эффектов с помощью newprocess
, time_dev
, temp_dev
, и supplier
как предикторы фиксированных эффектов. Включите термин случайных эффектов для точки пересечения, сгруппированного по factory
, для расчета различий в качестве, которые могут существовать из-за специфичных для фабрики изменений. Переменная отклика defects
имеет распределение Пуассона, и соответствующая функция ссылки для этой модели является логарифмической. Используйте метод Laplace fit, чтобы оценить коэффициенты. Задайте кодировку фиктивной переменной следующим 'effects'
, поэтому фиктивные переменные коэффициенты равны 0.
Количество дефектов может быть смоделировано с помощью распределения Пуассона
Это соответствует обобщенной модели линейных смешанных эффектов
где
количество дефектов, наблюдаемых в партии, произведенной заводом-изготовителем во время партии .
- среднее количество дефектов, соответствующих заводу (где ) во время партии (где ).
, , и являются измерениями для каждой переменной, которые соответствуют фабрике во время партии . Для примера, указывает, производится ли партия заводом-изготовителем во время партии использовали новый процесс.
и являются фиктивными переменными, которые используют эффекты (сумма к нулю) кодирования, чтобы указать, является ли компания C
или B
, соответственно, поставила химикаты для партии, произведенной заводом во время партии .
является точка пересечения случайных эффектов для каждого завода который учитывает специфические для завода изменения в качестве.
glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');
Вычислите и отобразите имена и оценочные значения эмпирических предикторов Байеса (EBP) для случайных эффектов.
[B,BNames] = randomEffects(glme)
B = 20×1
0.2913
0.1542
-0.2633
-0.4257
0.5453
-0.1069
0.3040
-0.1653
-0.1458
-0.0816
⋮
BNames=20×3 table
Group Level Name
___________ ______ _______________
{'factory'} {'1' } {'(Intercept)'}
{'factory'} {'2' } {'(Intercept)'}
{'factory'} {'3' } {'(Intercept)'}
{'factory'} {'4' } {'(Intercept)'}
{'factory'} {'5' } {'(Intercept)'}
{'factory'} {'6' } {'(Intercept)'}
{'factory'} {'7' } {'(Intercept)'}
{'factory'} {'8' } {'(Intercept)'}
{'factory'} {'9' } {'(Intercept)'}
{'factory'} {'10'} {'(Intercept)'}
{'factory'} {'11'} {'(Intercept)'}
{'factory'} {'12'} {'(Intercept)'}
{'factory'} {'13'} {'(Intercept)'}
{'factory'} {'14'} {'(Intercept)'}
{'factory'} {'15'} {'(Intercept)'}
{'factory'} {'16'} {'(Intercept)'}
⋮
Каждая строка B
содержит предполагаемый EPB для коэффициента случайных эффектов, названного в соответствующей строке Bnames
. Для примера значение -0.2633 в строке 3 B
- предполагаемый EPB для '(Intercept)'
для '3'
уровня от
factory
.
Загрузите выборочные данные.
load mfr
Эти моделируемые данные получены от производственной компании, которая управляет 50 заводами по всему миру, причем каждый завод выполняет пакетный процесс для создания готового продукта. Компания хочет уменьшить количество дефектов в каждой партии, поэтому разработала новый производственный процесс. Чтобы проверить эффективность нового процесса, компания выбрала 20 своих фабрик наугад для участия в эксперименте: Десять фабрик реализовали новый процесс, а другие десять продолжали запускать старый процесс. На каждом из 20 заводов компания запустила пять партий (в общей сложности 100 партий) и записала следующие данные:
Флаг, указывающий, использовал ли пакет новый процесс (newprocess
)
Время вычислений для каждой партии, в часах (time
)
Температура партии, в степенях Цельсия (temp
)
Категориальная переменная, указывающая на поставщика (A
, B
, или C
) химического вещества, используемого в партии (supplier
)
Количество дефектов в партии (defects
)
Данные также включают time_dev
и temp_dev
, которые представляют абсолютное отклонение времени и температуры, соответственно, от стандарта процесса в 3 часа при 20 степенях Цельсии.
Подбор обобщенной линейной модели смешанных эффектов с помощью newprocess
, time_dev
, temp_dev
, и supplier
как предикторы фиксированных эффектов. Включите термин случайных эффектов для точки пересечения, сгруппированного по factory
, для расчета различий в качестве, которые могут существовать из-за специфичных для фабрики изменений. Переменная отклика defects
имеет распределение Пуассона, и соответствующая функция ссылки для этой модели является логарифмической. Используйте метод Laplace fit, чтобы оценить коэффициенты. Задайте кодировку фиктивной переменной следующим 'effects'
, поэтому фиктивные переменные коэффициенты равны 0.
Количество дефектов может быть смоделировано с помощью распределения Пуассона
Это соответствует обобщенной модели линейных смешанных эффектов
где
количество дефектов, наблюдаемых в партии, произведенной заводом-изготовителем во время партии .
- среднее количество дефектов, соответствующих заводу (где ) во время партии (где ).
, , и являются измерениями для каждой переменной, которые соответствуют фабрике во время партии . Для примера, указывает, производится ли партия заводом-изготовителем во время партии использовали новый процесс.
и являются фиктивными переменными, которые используют эффекты (сумма к нулю) кодирования, чтобы указать, является ли компания C
или B
, соответственно, поставила химикаты для партии, произведенной заводом во время партии .
является точка пересечения случайных эффектов для каждого завода который учитывает специфические для завода изменения в качестве.
glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)',... 'Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');
Вычислите и отобразите 99% доверительных интервалов для коэффициентов случайных эффектов.
[B,BNames,stats] = randomEffects(glme,'Alpha',0.01);
stats
stats = Random effect coefficients: DFMethod = 'residual', Alpha = 0.01 Group Level Name Estimate SEPred {'factory'} {'1' } {'(Intercept)'} 0.29131 0.19163 {'factory'} {'2' } {'(Intercept)'} 0.15423 0.19216 {'factory'} {'3' } {'(Intercept)'} -0.26325 0.21249 {'factory'} {'4' } {'(Intercept)'} -0.42568 0.21667 {'factory'} {'5' } {'(Intercept)'} 0.5453 0.17963 {'factory'} {'6' } {'(Intercept)'} -0.10692 0.20133 {'factory'} {'7' } {'(Intercept)'} 0.30404 0.18397 {'factory'} {'8' } {'(Intercept)'} -0.16527 0.20505 {'factory'} {'9' } {'(Intercept)'} -0.14577 0.203 {'factory'} {'10'} {'(Intercept)'} -0.081632 0.20256 {'factory'} {'11'} {'(Intercept)'} 0.014529 0.21421 {'factory'} {'12'} {'(Intercept)'} 0.17706 0.20721 {'factory'} {'13'} {'(Intercept)'} 0.24872 0.20522 {'factory'} {'14'} {'(Intercept)'} 0.21145 0.20678 {'factory'} {'15'} {'(Intercept)'} 0.2777 0.20345 {'factory'} {'16'} {'(Intercept)'} -0.25175 0.22568 {'factory'} {'17'} {'(Intercept)'} -0.13507 0.22301 {'factory'} {'18'} {'(Intercept)'} -0.1627 0.22269 {'factory'} {'19'} {'(Intercept)'} -0.32083 0.23294 {'factory'} {'20'} {'(Intercept)'} 0.058418 0.21481 tStat DF pValue Lower Upper 1.5202 94 0.13182 -0.21251 0.79514 0.80259 94 0.42423 -0.351 0.65946 -1.2389 94 0.21846 -0.82191 0.29541 -1.9646 94 0.052408 -0.99534 0.14398 3.0356 94 0.0031051 0.073019 1.0176 -0.53105 94 0.59664 -0.63625 0.42241 1.6527 94 0.10173 -0.17964 0.78771 -0.80597 94 0.42229 -0.70438 0.37385 -0.71806 94 0.4745 -0.67949 0.38795 -0.403 94 0.68786 -0.61419 0.45093 0.067826 94 0.94607 -0.54866 0.57772 0.85446 94 0.39502 -0.36774 0.72185 1.212 94 0.22857 -0.29083 0.78827 1.0226 94 0.30913 -0.33221 0.75511 1.365 94 0.17552 -0.25719 0.81259 -1.1156 94 0.26746 -0.84509 0.34158 -0.60568 94 0.54619 -0.7214 0.45125 -0.73061 94 0.46684 -0.74817 0.42278 -1.3773 94 0.17168 -0.93325 0.29159 0.27195 94 0.78626 -0.50635 0.62319
Первые три столбца stats
содержать имя группы, уровень и имя коэффициента случайных эффектов. Столбец 4 содержит предполагаемую EBP коэффициента случайных эффектов. Последние два столбца stats
, Lower
и Upper
, содержат нижнюю и верхнюю границы интервала 99% доверия, соответственно. Для примера - для коэффициента для '(Intercept)'
для 3
уровня от
factory
, предполагаемый EBP составляет -0,26325, и 99% доверительный интервал равен [-0,82191,0,29541].
[1] Booth, J.G., and J.P. Хоберт. Стандартные ошибки предсказания в обобщенных линейных смешанных моделях. Журнал Американской статистической ассоциации, том 93, 1998, стр. 262-272.
coefCI
| coefTest
| fixedEffects
| GeneralizedLinearMixedModel
У вас есть измененная версия этого примера. Вы хотите открыть этот пример с вашими правками?
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.