Гауссовская регрессионая модель ядра с использованием расширения случайных функций
RegressionKernel
является обученным объектом модели для регрессии Гауссова ядра с использованием расширения случайных функций. RegressionKernel
является более практичным для приложений больших данных, которые имеют большие наборы обучающих данных, но могут также применяться к меньшим наборам данных, которые помещаются в памяти.
В отличие от других регрессионных моделей и для экономичного использования памяти, RegressionKernel
объекты модели не хранят обучающие данные. Однако они хранят такую информацию, как размерность расширенного пространства, параметр шкалы ядра и сила регуляризации.
Можно использовать обученные RegressionKernel
модели, чтобы продолжить обучение с использованием обучающих данных, предсказать ответы для новых данных и вычислить среднюю квадратичную невязку или нечувствительную к эпсилону потерю. Для получения дополнительной информации см. resume
, predict
, и loss
.
Создайте RegressionKernel
использование объекта fitrkernel
функция. Эта функция преобразует данные в низкомерном пространстве в высокомерное пространство, затем подбирает линейную модель в высокомерном пространстве путем минимизации регуляризованной целевой функции. Получение линейной модели в высокомерном пространстве эквивалентно применению Гауссова ядра к модели в низкомерном пространстве. Доступные линейные регрессионные модели включают регуляризованные машины опорных векторов (SVM) и регрессионые модели методом наименьших квадратов.
Epsilon
- Половина ширины эпсилонно-нечувствительной полосыПоловина ширины эпсилонно-нечувствительной полосы, заданная как неотрицательный скаляр.
Если Learner
не 'svm'
, затем Epsilon
- пустой массив ([]
).
Типы данных: single
| double
Learner
- Тип линейной регрессионной модели'svm'
(по умолчанию) | 'leastsquares'
Тип линейной регрессионой модели, заданный как 'leastsquares'
или 'svm'
.
В следующей таблице:
x является наблюдением ( вектором-строкой) от p предиктора переменных.
является преобразованием наблюдения ( вектора-строки) для функции расширения. T (x) карты x в в высокомерное пространство ().
β является вектором m коэффициентов.
b - скалярное смещение.
Значение | Алгоритм | Функция потерь | FittedLoss Значение |
---|---|---|---|
'leastsquares' | Линейная регрессия через обыкновенные наименьшие квадраты | Средняя квадратичная невязка (MSE): | 'mse' |
'svm' | Машина опорных векторов регрессия | Эпсилон нечувствительный: | 'epsiloninsensitive' |
NumExpansionDimensions
- Количество размерностей расширенного пространстваКоличество размерностей расширенного пространства, заданное как положительное целое число.
Типы данных: single
| double
KernelScale
- параметр шкалы ядраПараметр шкалы ядра, заданный как положительная скалярная величина.
Типы данных: single
| double
BoxConstraint
- Прямоугольное ограничениеПрямоугольное ограничение, заданное как положительная скалярная величина.
Типы данных: double
| single
Lambda
- Прочность термина регуляризацииСила термина регуляризации, заданная как неотрицательный скаляр.
Типы данных: single
| double
FittedLoss
- Функция потерь, используемая для соответствия линейной модели'epsiloninsensitive'
| 'mse'
Функция потерь, используемая для соответствия линейной модели, задается как 'epsiloninsensitive'
или 'mse'
.
Значение | Алгоритм | Функция потерь | Learner Значение |
---|---|---|---|
'epsiloninsensitive' | Машина опорных векторов регрессия | Эпсилон нечувствительный: | 'svm' |
'mse' | Линейная регрессия через обыкновенные наименьшие квадраты | Средняя квадратичная невязка (MSE): | 'leastsquares' |
Regularization
- Тип штрафа сложности'lasso (L1)'
| 'ridge (L2)'
Тип штрафа сложности, заданный как 'lasso (L1)'
или 'ridge (L2)'
.
Программное обеспечение составляет целевую функцию для минимизации из суммы функции средних потерь (см FittedLoss
) и значение регуляризации из этой таблицы.
Значение | Описание |
---|---|
'lasso (L1)' | Лассо (L 1) штраф : |
'ridge (L2)' | Хребет (L 2) штраф : |
λ определяет силу термина регуляризации (см Lambda
).
Программа исключает термин смещения (β 0) из штрафа за регуляризацию.
CategoricalPredictors
- Индексы категориальных предикторовКатегориальные индексы предиктора, заданные как вектор положительных целых чисел. CategoricalPredictors
содержит значения индекса, соответствующие столбцам данных предиктора, которые содержат категориальные предикторы. Если ни один из предикторов не является категориальным, то это свойство пустое ([]
).
Типы данных: single
| double
ModelParameters
- Параметры, используемые для обучающей моделиПараметры, используемые для настройки RegressionKernel
модель, заданная как структура.
Доступ к полям ModelParameters
использование записи через точку. Для примера получите доступ к относительной погрешности о линейных коэффициентах и термине смещения при помощи Mdl.ModelParameters.BetaTolerance
.
Типы данных: struct
PredictorNames
- Имена предикторовИмена предиктора в порядке их внешнего вида в данных предиктора, заданные как массив ячеек из векторов символов. Длина PredictorNames
равен количеству столбцов, используемых в качестве переменных предиктора в обучающих данных X
или Tbl
.
Типы данных: cell
ExpandedPredictorNames
- Расширенные имена предикторовРасширенные имена предикторов, заданные как массив ячеек из векторов символов.
Если модель использует кодировку для категориальных переменных, то ExpandedPredictorNames
включает имена, которые описывают расширенные переменные. В противном случае ExpandedPredictorNames
то же, что и PredictorNames
.
Типы данных: cell
ResponseName
- Имя переменной откликаИмя переменной отклика, заданное как вектор символов.
Типы данных: char
ResponseTransform
- Функция преобразования отклика для применения к предсказанным откликам'none'
| указатель на функциюФункция преобразования отклика для применения к предсказанным откликам, заданная как 'none'
или указатель на функцию.
Для регрессионных моделей ядра и перед преобразованием отклика предсказанный ответ для x наблюдения ( вектора-строки) является
является преобразованием наблюдения для расширения функции.
β соответствует Mdl.Beta
.
b соответствует Mdl.Bias
.
Для MATLAB® function или функция, которую вы задаете, вводите указатель на функцию. Для примера можно ввести Mdl.ResponseTransform = @function
, где function
принимает числовой вектор исходных откликов и возвращает числовой вектор того же размера, содержащий преобразованные отклики.
Типы данных: char
| function_handle
lime | Локальные интерпретируемые модели-агностические объяснения (LIME) |
loss | Регрессионые потери для модели регрессии Гауссова ядра |
partialDependence | Вычисление частичной зависимости |
plotPartialDependence | Создайте график частичной зависимости (PDP) и отдельные графики условного ожидания (ICE) |
predict | Предсказать ответы для модели регрессии Гауссова ядра |
resume | Возобновите обучение модели регрессии Гауссова ядра |
shapley | Значения Shapley |
Обучите регрессионую модель ядра для длинный массив с помощью SVM.
При выполнении вычислений на длинные массивы MATLAB ® использует либо параллельный пул (по умолчанию, если у вас есть Parallel Computing Toolbox™), либо локальный сеанс работы с MATLAB. Чтобы запустить пример с использованием локального сеанса работы с MATLAB, когда у вас есть Parallel Computing Toolbox, измените глобальное окружение выполнения с помощью mapreducer
функция.
mapreducer(0)
Создайте datastore, которое ссылается на расположение папки с данными. Данные могут содержаться в одном файле, наборе файлов или целой папке. Лечите 'NA'
значения как отсутствующие данные, так что datastore
заменяет их на NaN
значения. Выберите подмножество переменных для использования. Составьте длинная таблица в верхней части datastore.
varnames = {'ArrTime','DepTime','ActualElapsedTime'}; ds = datastore('airlinesmall.csv','TreatAsMissing','NA',... 'SelectedVariableNames',varnames); t = tall(ds);
Задайте DepTime
и ArrTime
как переменные предиктора (X
) и ActualElapsedTime
как переменная отклика (Y
). Выберите наблюдения, для которых ArrTime
позже DepTime
.
daytime = t.ArrTime>t.DepTime; Y = t.ActualElapsedTime(daytime); % Response data X = t{daytime,{'DepTime' 'ArrTime'}}; % Predictor data
Стандартизируйте переменные предиктора.
Z = zscore(X); % Standardize the data
Обучите регрессионую модель Гауссова ядра по умолчанию со стандартизированными предикторами. Извлеките сводные данные подгонки, чтобы определить, насколько хорошо алгоритм оптимизации подходит модели к данным.
[Mdl,FitInfo] = fitrkernel(Z,Y)
Found 6 chunks. |========================================================================= | Solver | Iteration / | Objective | Gradient | Beta relative | | | Data Pass | | magnitude | change | |========================================================================= | INIT | 0 / 1 | 4.307833e+01 | 4.345788e-02 | NaN | | LBFGS | 0 / 2 | 3.705713e+01 | 1.577301e-02 | 9.988252e-01 | | LBFGS | 1 / 3 | 3.704022e+01 | 3.082836e-02 | 1.338410e-03 | | LBFGS | 2 / 4 | 3.701398e+01 | 3.006488e-02 | 1.116070e-03 | | LBFGS | 2 / 5 | 3.698797e+01 | 2.870642e-02 | 2.234599e-03 | | LBFGS | 2 / 6 | 3.693687e+01 | 2.625581e-02 | 4.479069e-03 | | LBFGS | 2 / 7 | 3.683757e+01 | 2.239620e-02 | 8.997877e-03 | | LBFGS | 2 / 8 | 3.665038e+01 | 1.782358e-02 | 1.815682e-02 | | LBFGS | 3 / 9 | 3.473411e+01 | 4.074480e-02 | 1.778166e-01 | | LBFGS | 4 / 10 | 3.684246e+01 | 1.608942e-01 | 3.294968e-01 | | LBFGS | 4 / 11 | 3.441595e+01 | 8.587703e-02 | 1.420892e-01 | | LBFGS | 5 / 12 | 3.377755e+01 | 3.760006e-02 | 4.640134e-02 | | LBFGS | 6 / 13 | 3.357732e+01 | 1.912644e-02 | 3.842057e-02 | | LBFGS | 7 / 14 | 3.334081e+01 | 3.046709e-02 | 6.211243e-02 | | LBFGS | 8 / 15 | 3.309239e+01 | 3.858085e-02 | 6.411356e-02 | | LBFGS | 9 / 16 | 3.276577e+01 | 3.612292e-02 | 6.938579e-02 | | LBFGS | 10 / 17 | 3.234029e+01 | 2.734959e-02 | 1.144307e-01 | | LBFGS | 11 / 18 | 3.205763e+01 | 2.545990e-02 | 7.323180e-02 | | LBFGS | 12 / 19 | 3.183341e+01 | 2.472411e-02 | 3.689625e-02 | | LBFGS | 13 / 20 | 3.169307e+01 | 2.064613e-02 | 2.998555e-02 | |========================================================================= | Solver | Iteration / | Objective | Gradient | Beta relative | | | Data Pass | | magnitude | change | |========================================================================= | LBFGS | 14 / 21 | 3.146896e+01 | 1.788395e-02 | 5.967293e-02 | | LBFGS | 15 / 22 | 3.118171e+01 | 1.660696e-02 | 1.124062e-01 | | LBFGS | 16 / 23 | 3.106224e+01 | 1.506147e-02 | 7.947037e-02 | | LBFGS | 17 / 24 | 3.098395e+01 | 1.564561e-02 | 2.678370e-02 | | LBFGS | 18 / 25 | 3.096029e+01 | 4.464104e-02 | 4.547148e-02 | | LBFGS | 19 / 26 | 3.085475e+01 | 1.442800e-02 | 1.677268e-02 | | LBFGS | 20 / 27 | 3.078140e+01 | 1.906548e-02 | 2.275185e-02 | |========================================================================|
Mdl = RegressionKernel PredictorNames: {'x1' 'x2'} ResponseName: 'Y' Learner: 'svm' NumExpansionDimensions: 64 KernelScale: 1 Lambda: 8.5385e-06 BoxConstraint: 1 Epsilon: 5.9303 Properties, Methods
FitInfo = struct with fields:
Solver: 'LBFGS-tall'
LossFunction: 'epsiloninsensitive'
Lambda: 8.5385e-06
BetaTolerance: 1.0000e-03
GradientTolerance: 1.0000e-05
ObjectiveValue: 30.7814
GradientMagnitude: 0.0191
RelativeChangeInBeta: 0.0228
FitTime: 56.8110
History: [1x1 struct]
Mdl
является RegressionKernel
модель. Чтобы просмотреть ошибку регрессии, можно пройти Mdl
и обучающих данных или новых данных для loss
функция. Или ты можешь пройти Mdl
и новые данные предиктора в predict
функция для предсказания ответов на новые наблюдения. Можно также пройти Mdl
и обучающих данных к resume
функция для продолжения обучения.
FitInfo
- массив структур, содержащий информацию об оптимизации. Использование FitInfo
для определения, являются ли измерения оптимизации завершением удовлетворительными.
Для повышения точности можно увеличить максимальное количество итераций оптимизации ('IterationLimit'
) и уменьшить значения допусков ('BetaTolerance'
и 'GradientTolerance'
) при помощи аргументов пары "имя-значение" fitrkernel
. Это может улучшить такие меры, как ObjectiveValue
и RelativeChangeInBeta
в FitInfo
. Можно также оптимизировать параметры модели при помощи 'OptimizeHyperparameters'
аргумент пары "имя-значение".
Возобновите обучение регрессионной модели Гауссова ядра для больших итераций, чтобы улучшить регрессионую потерю.
Загрузите carbig
набор данных.
load carbig
Задайте переменные предиктора (X
) и переменной отклика (Y
).
X = [Acceleration,Cylinders,Displacement,Horsepower,Weight]; Y = MPG;
Удалите строки X
и Y
где любой массив имеет NaN
значения. Удаление строк с NaN
значения перед передачей данных в fitrkernel
может ускорить обучение и уменьшить использование памяти.
R = rmmissing([X Y]); % Data with missing entries removed
X = R(:,1:5);
Y = R(:,end);
Зарезервируйте 10% наблюдений в виде отсеченной выборки. Извлеките индексы обучения и тестирования из определения раздела.
rng(10) % For reproducibility N = length(Y); cvp = cvpartition(N,'Holdout',0.1); idxTrn = training(cvp); % Training set indices idxTest = test(cvp); % Test set indices
Стандартизируйте обучающие данные и обучите регрессионую модель ядра. Установите предел итерации равный 5 и задайте 'Verbose',1
для отображения диагностической информации.
Xtrain = X(idxTrn,:); Ytrain = Y(idxTrn); [Ztrain,tr_mu,tr_sigma] = zscore(Xtrain); % Standardize the training data tr_sigma(tr_sigma==0) = 1; Mdl = fitrkernel(Ztrain,Ytrain,'IterationLimit',5,'Verbose',1)
|=================================================================================================================| | Solver | Pass | Iteration | Objective | Step | Gradient | Relative | sum(beta~=0) | | | | | | | magnitude | change in Beta | | |=================================================================================================================| | LBFGS | 1 | 0 | 5.691016e+00 | 0.000000e+00 | 5.852758e-02 | | 0 | | LBFGS | 1 | 1 | 5.086537e+00 | 8.000000e+00 | 5.220869e-02 | 9.846711e-02 | 256 | | LBFGS | 1 | 2 | 3.862301e+00 | 5.000000e-01 | 3.796034e-01 | 5.998808e-01 | 256 | | LBFGS | 1 | 3 | 3.460613e+00 | 1.000000e+00 | 3.257790e-01 | 1.615091e-01 | 256 | | LBFGS | 1 | 4 | 3.136228e+00 | 1.000000e+00 | 2.832861e-02 | 8.006254e-02 | 256 | | LBFGS | 1 | 5 | 3.063978e+00 | 1.000000e+00 | 1.475038e-02 | 3.314455e-02 | 256 | |=================================================================================================================|
Mdl = RegressionKernel ResponseName: 'Y' Learner: 'svm' NumExpansionDimensions: 256 KernelScale: 1 Lambda: 0.0028 BoxConstraint: 1 Epsilon: 0.8617 Properties, Methods
Mdl
является RegressionKernel
модель.
Стандартизируйте тестовые данные, используя одно и то же среднее и стандартное отклонение столбцов обучающих данных. Оцените нечувствительную к эпсилону ошибку для тестового набора.
Xtest = X(idxTest,:); Ztest = (Xtest-tr_mu)./tr_sigma; % Standardize the test data Ytest = Y(idxTest); L = loss(Mdl,Ztest,Ytest,'LossFun','epsiloninsensitive')
L = 2.0674
Продолжите обучение модели при помощи resume
. Эта функция продолжает обучение с теми же опциями, что и для обучения Mdl
.
UpdatedMdl = resume(Mdl,Ztrain,Ytrain);
|=================================================================================================================| | Solver | Pass | Iteration | Objective | Step | Gradient | Relative | sum(beta~=0) | | | | | | | magnitude | change in Beta | | |=================================================================================================================| | LBFGS | 1 | 0 | 3.063978e+00 | 0.000000e+00 | 1.475038e-02 | | 256 | | LBFGS | 1 | 1 | 3.007822e+00 | 8.000000e+00 | 1.391637e-02 | 2.603966e-02 | 256 | | LBFGS | 1 | 2 | 2.817171e+00 | 5.000000e-01 | 5.949008e-02 | 1.918084e-01 | 256 | | LBFGS | 1 | 3 | 2.807294e+00 | 2.500000e-01 | 6.798867e-02 | 2.973097e-02 | 256 | | LBFGS | 1 | 4 | 2.791060e+00 | 1.000000e+00 | 2.549575e-02 | 1.639328e-02 | 256 | | LBFGS | 1 | 5 | 2.767821e+00 | 1.000000e+00 | 6.154419e-03 | 2.468903e-02 | 256 | | LBFGS | 1 | 6 | 2.738163e+00 | 1.000000e+00 | 5.949008e-02 | 9.476263e-02 | 256 | | LBFGS | 1 | 7 | 2.719146e+00 | 1.000000e+00 | 1.699717e-02 | 1.849972e-02 | 256 | | LBFGS | 1 | 8 | 2.705941e+00 | 1.000000e+00 | 3.116147e-02 | 4.152590e-02 | 256 | | LBFGS | 1 | 9 | 2.701162e+00 | 1.000000e+00 | 5.665722e-03 | 9.401466e-03 | 256 | | LBFGS | 1 | 10 | 2.695341e+00 | 5.000000e-01 | 3.116147e-02 | 4.968046e-02 | 256 | | LBFGS | 1 | 11 | 2.691277e+00 | 1.000000e+00 | 8.498584e-03 | 1.017446e-02 | 256 | | LBFGS | 1 | 12 | 2.689972e+00 | 1.000000e+00 | 1.983003e-02 | 9.938921e-03 | 256 | | LBFGS | 1 | 13 | 2.688979e+00 | 1.000000e+00 | 1.416431e-02 | 6.606316e-03 | 256 | | LBFGS | 1 | 14 | 2.687787e+00 | 1.000000e+00 | 1.621956e-03 | 7.089542e-03 | 256 | | LBFGS | 1 | 15 | 2.686539e+00 | 1.000000e+00 | 1.699717e-02 | 1.169701e-02 | 256 | | LBFGS | 1 | 16 | 2.685356e+00 | 1.000000e+00 | 1.133144e-02 | 1.069310e-02 | 256 | | LBFGS | 1 | 17 | 2.685021e+00 | 5.000000e-01 | 1.133144e-02 | 2.104248e-02 | 256 | | LBFGS | 1 | 18 | 2.684002e+00 | 1.000000e+00 | 2.832861e-03 | 6.175231e-03 | 256 | | LBFGS | 1 | 19 | 2.683507e+00 | 1.000000e+00 | 5.665722e-03 | 3.724026e-03 | 256 | | LBFGS | 1 | 20 | 2.683343e+00 | 5.000000e-01 | 5.665722e-03 | 9.549119e-03 | 256 | |=================================================================================================================| | Solver | Pass | Iteration | Objective | Step | Gradient | Relative | sum(beta~=0) | | | | | | | magnitude | change in Beta | | |=================================================================================================================| | LBFGS | 1 | 21 | 2.682897e+00 | 1.000000e+00 | 5.665722e-03 | 7.172867e-03 | 256 | | LBFGS | 1 | 22 | 2.682682e+00 | 1.000000e+00 | 2.832861e-03 | 2.587726e-03 | 256 | | LBFGS | 1 | 23 | 2.682485e+00 | 1.000000e+00 | 2.832861e-03 | 2.953648e-03 | 256 | | LBFGS | 1 | 24 | 2.682326e+00 | 1.000000e+00 | 2.832861e-03 | 7.777294e-03 | 256 | | LBFGS | 1 | 25 | 2.681914e+00 | 1.000000e+00 | 2.832861e-03 | 2.778555e-03 | 256 | | LBFGS | 1 | 26 | 2.681867e+00 | 5.000000e-01 | 1.031085e-03 | 3.638352e-03 | 256 | | LBFGS | 1 | 27 | 2.681725e+00 | 1.000000e+00 | 5.665722e-03 | 1.515199e-03 | 256 | | LBFGS | 1 | 28 | 2.681692e+00 | 5.000000e-01 | 1.314940e-03 | 1.850055e-03 | 256 | | LBFGS | 1 | 29 | 2.681625e+00 | 1.000000e+00 | 2.832861e-03 | 1.456903e-03 | 256 | | LBFGS | 1 | 30 | 2.681594e+00 | 5.000000e-01 | 2.832861e-03 | 8.704875e-04 | 256 | | LBFGS | 1 | 31 | 2.681581e+00 | 5.000000e-01 | 8.498584e-03 | 3.934768e-04 | 256 | | LBFGS | 1 | 32 | 2.681579e+00 | 1.000000e+00 | 8.498584e-03 | 1.847866e-03 | 256 | | LBFGS | 1 | 33 | 2.681553e+00 | 1.000000e+00 | 9.857038e-04 | 6.509825e-04 | 256 | | LBFGS | 1 | 34 | 2.681541e+00 | 5.000000e-01 | 8.498584e-03 | 6.635528e-04 | 256 | | LBFGS | 1 | 35 | 2.681499e+00 | 1.000000e+00 | 5.665722e-03 | 6.194735e-04 | 256 | | LBFGS | 1 | 36 | 2.681493e+00 | 5.000000e-01 | 1.133144e-02 | 1.617763e-03 | 256 | | LBFGS | 1 | 37 | 2.681473e+00 | 1.000000e+00 | 9.869233e-04 | 8.418484e-04 | 256 | | LBFGS | 1 | 38 | 2.681469e+00 | 1.000000e+00 | 5.665722e-03 | 1.069722e-03 | 256 | | LBFGS | 1 | 39 | 2.681432e+00 | 1.000000e+00 | 2.832861e-03 | 8.501930e-04 | 256 | | LBFGS | 1 | 40 | 2.681423e+00 | 2.500000e-01 | 1.133144e-02 | 9.543716e-04 | 256 | |=================================================================================================================| | Solver | Pass | Iteration | Objective | Step | Gradient | Relative | sum(beta~=0) | | | | | | | magnitude | change in Beta | | |=================================================================================================================| | LBFGS | 1 | 41 | 2.681416e+00 | 1.000000e+00 | 2.832861e-03 | 8.763251e-04 | 256 | | LBFGS | 1 | 42 | 2.681413e+00 | 5.000000e-01 | 2.832861e-03 | 4.101888e-04 | 256 | | LBFGS | 1 | 43 | 2.681403e+00 | 1.000000e+00 | 5.665722e-03 | 2.713209e-04 | 256 | | LBFGS | 1 | 44 | 2.681392e+00 | 1.000000e+00 | 2.832861e-03 | 2.115241e-04 | 256 | | LBFGS | 1 | 45 | 2.681383e+00 | 1.000000e+00 | 2.832861e-03 | 2.872858e-04 | 256 | | LBFGS | 1 | 46 | 2.681374e+00 | 1.000000e+00 | 8.498584e-03 | 5.771001e-04 | 256 | | LBFGS | 1 | 47 | 2.681353e+00 | 1.000000e+00 | 2.832861e-03 | 3.160871e-04 | 256 | | LBFGS | 1 | 48 | 2.681334e+00 | 5.000000e-01 | 8.498584e-03 | 1.045502e-03 | 256 | | LBFGS | 1 | 49 | 2.681314e+00 | 1.000000e+00 | 7.878714e-04 | 1.505118e-03 | 256 | | LBFGS | 1 | 50 | 2.681306e+00 | 1.000000e+00 | 2.832861e-03 | 4.756894e-04 | 256 | | LBFGS | 1 | 51 | 2.681301e+00 | 1.000000e+00 | 1.133144e-02 | 3.664873e-04 | 256 | | LBFGS | 1 | 52 | 2.681288e+00 | 1.000000e+00 | 2.832861e-03 | 1.449821e-04 | 256 | | LBFGS | 1 | 53 | 2.681287e+00 | 2.500000e-01 | 1.699717e-02 | 2.357176e-04 | 256 | | LBFGS | 1 | 54 | 2.681282e+00 | 1.000000e+00 | 5.665722e-03 | 2.046663e-04 | 256 | | LBFGS | 1 | 55 | 2.681278e+00 | 1.000000e+00 | 2.832861e-03 | 2.546349e-04 | 256 | | LBFGS | 1 | 56 | 2.681276e+00 | 2.500000e-01 | 1.307940e-03 | 1.966786e-04 | 256 | | LBFGS | 1 | 57 | 2.681274e+00 | 5.000000e-01 | 1.416431e-02 | 1.005310e-04 | 256 | | LBFGS | 1 | 58 | 2.681271e+00 | 5.000000e-01 | 1.118892e-03 | 1.147324e-04 | 256 | | LBFGS | 1 | 59 | 2.681269e+00 | 1.000000e+00 | 2.832861e-03 | 1.332914e-04 | 256 | | LBFGS | 1 | 60 | 2.681268e+00 | 2.500000e-01 | 1.132045e-03 | 5.441369e-05 | 256 | |=================================================================================================================|
Оцените нечувствительную к эпсилону ошибку для тестового набора с помощью обновленной модели.
UpdatedL = loss(UpdatedMdl,Ztest,Ytest,'LossFun','epsiloninsensitive')
UpdatedL = 1.8933
Ошибка регрессии уменьшается в множителе около 0.08
после resume
обновляет регрессионую модель с большим количеством итераций.
У вас есть измененная версия этого примера. Вы хотите открыть этот пример с вашими правками?
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.