Подбирайте модель VAR CPI и уровня безработицы

В этом примере показано, как оценить параметры модели VAR (4). Ряды ответа являются ежеквартальными мерами индекса потребительских цен (CPI) и уровня безработицы.

Загрузите Data_USEconModel набор данных.

load Data_USEconModel

Постройте два ряда на отдельных графиках.

figure;
plot(DataTable.Time,DataTable.CPIAUCSL);
title('Consumer Price Index');
ylabel('Index');
xlabel('Date');

Figure contains an axes object. The axes object with title Consumer Price Index contains an object of type line.

figure;
plot(DataTable.Time,DataTable.UNRATE);
title('Unemployment rate');
ylabel('Percent');
xlabel('Date');

Figure contains an axes object. The axes object with title Unemployment rate contains an object of type line.

CPI, кажется, растет экспоненциально.

Стабилизируйте CPI путем преобразования его в серию темпов роста. Синхронизируйте два ряда путем удаления первого наблюдения из ряда уровня безработицы.

rcpi = price2ret(DataTable.CPIAUCSL);
unrate = DataTable.UNRATE(2:end);

Создайте модель VAR (4) по умолчанию с помощью краткого синтаксиса.

Mdl = varm(2,4)
Mdl = 
  varm with properties:

     Description: "2-Dimensional VAR(4) Model"
     SeriesNames: "Y1"  "Y2" 
       NumSeries: 2
               P: 4
        Constant: [2×1 vector of NaNs]
              AR: {2×2 matrices of NaNs} at lags [1 2 3 ... and 1 more]
           Trend: [2×1 vector of zeros]
            Beta: [2×0 matrix]
      Covariance: [2×2 matrix of NaNs]

Mdl varm объект модели. Это служит шаблоном для оценки модели. MATLAB� рассматривает любой NaN значения как неизвестные значения параметров, которые будут оценены. Например, Constant свойство 2 1 вектор из NaN значения. Поэтому константы модели являются параметрами модели, которые будут оценены.

Подбирайте модель к данным.

EstMdl = estimate(Mdl,[rcpi unrate])
EstMdl = 
  varm with properties:

     Description: "AR-Stationary 2-Dimensional VAR(4) Model"
     SeriesNames: "Y1"  "Y2" 
       NumSeries: 2
               P: 4
        Constant: [0.00171639 0.316255]'
              AR: {2×2 matrices} at lags [1 2 3 ... and 1 more]
           Trend: [2×1 vector of zeros]
            Beta: [2×0 matrix]
      Covariance: [2×2 matrix]

EstMdl varm объект модели. EstMdl структурно то же самое как Mdl, но все параметры известны. Чтобы смотреть предполагаемые параметры, можно отобразить их использующий запись через точку.

Отобразите коэффициент первого термина задержки.

EstMdl.AR{1}
ans = 2×2

    0.3090   -0.0032
   -4.4834    1.3433

Отобразите сводные данные оценки включая все параметры, стандартные погрешности и p-значения для тестирования нулевой гипотезы, что коэффициент 0.

summarize(EstMdl)
 
   AR-Stationary 2-Dimensional VAR(4) Model
 
    Effective Sample Size: 241
    Number of Estimated Parameters: 18
    LogLikelihood: 811.361
    AIC: -1586.72
    BIC: -1524
 
                      Value       StandardError    TStatistic      PValue  
                   ___________    _____________    __________    __________

    Constant(1)      0.0017164      0.0015988         1.0735        0.28303
    Constant(2)        0.31626       0.091961          3.439      0.0005838
    AR{1}(1,1)         0.30899       0.063356          4.877     1.0772e-06
    AR{1}(2,1)         -4.4834         3.6441        -1.2303        0.21857
    AR{1}(1,2)      -0.0031796      0.0011306        -2.8122       0.004921
    AR{1}(2,2)          1.3433       0.065032         20.656      8.546e-95
    AR{2}(1,1)         0.22433       0.069631         3.2217      0.0012741
    AR{2}(2,1)          7.1896          4.005         1.7951       0.072631
    AR{2}(1,2)       0.0012375      0.0018631         0.6642        0.50656
    AR{2}(2,2)        -0.26817        0.10716        -2.5025       0.012331
    AR{3}(1,1)         0.35333       0.068287         5.1742     2.2887e-07
    AR{3}(2,1)           1.487         3.9277        0.37858          0.705
    AR{3}(1,2)       0.0028594      0.0018621         1.5355        0.12465
    AR{3}(2,2)        -0.22709         0.1071        -2.1202       0.033986
    AR{4}(1,1)       -0.047563       0.069026       -0.68906        0.49079
    AR{4}(2,1)          8.6379         3.9702         2.1757       0.029579
    AR{4}(1,2)     -0.00096323      0.0011142       -0.86448        0.38733
    AR{4}(2,2)        0.076725       0.064088         1.1972        0.23123

 
   Innovations Covariance Matrix:
    0.0000   -0.0002
   -0.0002    0.1167

 
   Innovations Correlation Matrix:
    1.0000   -0.0925
   -0.0925    1.0000

Смотрите также

Объекты

Функции

Похожие темы

Для просмотра документации необходимо авторизоваться на сайте