Класс: ssm
Более сглаженная симуляция модели в пространстве состояний
возвращает симулированные состояния (X
= simsmooth(Mdl
,Y
)X
) путем применения симуляции, более сглаженной к независимой от времени или изменяющейся во времени модели в пространстве состояний (Mdl
) и ответы (Y
). Таким образом, программное обеспечение использует вперед фильтрацию и заднюю выборку, чтобы получить один случайный путь из апостериорного распределения состояний.
возвращает симулированные состояния с дополнительными опциями, заданными одним или несколькими X
= simsmooth(Mdl
,Y
,Name,Value
)Name,Value
парные аргументы.
Фильтр Калмана хранит недостающие данные, не обновляя отфильтрованное оценочное соответствие состояния недостающим наблюдениям. Другими словами, предположите, что существует недостающее наблюдение в период t. Затем прогноз состояния для периода t на основе предыдущего t – 1 наблюдение и отфильтрованное состояние в течение периода t эквивалентен.
Для увеличенной скорости в симуляции состояний, симуляция более сглаженные реализации минимальная проверка ошибок размерности. Поэтому для моделей с неизвестными значениями параметров, необходимо гарантировать, что размерности данных и размерности содействующих матриц сопоставимы.
[1] Дербин Дж. и С. Дж. Купмен. “Простая и Эффективная Симуляция, Более сглаженная для Анализа Временных рядов Пространства состояний”. Biometrika. Vol 89., № 3, 2002, стр 603–615.
[2] Дербин Дж. и С. Дж. Купмен. Анализ Временных рядов Методами Пространства состояний. 2-й редактор Оксфорд: Издательство Оксфордского университета, 2012.
ssm
| estimate
| filter
| smooth
| simulate