tunerconfig

Параметры конфигурации тюнера фильтра Fusion

Описание

tunerconfig объект создает настройку тюнера для фильтра сплава, используемого, чтобы настроить фильтр для уменьшаемой ошибки расчета.

Создание

Описание

пример

config = tunerconfig(filterName) создает tunerconfig объект, управляющий алгоритмом оптимизации функции мелодии фильтра сплава.

config = tunerconfig(filterName,Name,Value) конфигурирует созданный tunerconfig свойства объектов с помощью одного или нескольких аргументов пары "имя-значение". Name имя свойства и Value соответствующее значение. Name должен появиться в кавычках. Можно задать несколько аргументов пары "имя-значение" в любом порядке как Name1,Value1,...,NameN,ValueN. Любые незаданные свойства берут значения по умолчанию.

Например, tunerconfig('imufilter','MaxIterations',3) создайте tunerconfig объект для imufilter объект максимум с трех позволенных итераций.

Входные аргументы

развернуть все

Фильтр Fusion называет в виде одной из этих опций:

  • 'imufilter'

  • 'ahrsfilter'

  • 'ahrs10filter'

  • 'insfilterAsync'

  • 'insfilterMARG'

  • 'insfitlerErrorState'

  • 'insfilterNonholonomic'

Свойства

развернуть все

Это свойство доступно только для чтения.

Имя класса фильтра в виде строки. Его значение является одной из этих строк:

  • "imufilter"

  • "ahrsfilter"

  • "ahrs10filter"

  • "insfilterAsync"

  • "insfilterMARG"

  • "insfitlerErrorState"

  • "insfilterNonholonomic"

Настраиваемые параметры в виде массива строк. Каждая строка является настраиваемым именем свойства фильтра сплава. По умолчанию свойство содержит все настраиваемые параметры фильтра сплава.

Пример: ["AccelerometerNoise" "GyroscopeNoise"]

Фактор прямого шага в виде скаляра, больше, чем 1. Во время настраивающего процесса тюнер увеличивает или уменьшает шумовые параметры, чтобы достигнуть меньших ошибок расчета. Это свойство задает отношение увеличения параметра во время шага увеличения параметра.

Фактор обратного шага в виде скаляра в области значений (0,1). Во время настраивающего процесса тюнер увеличивает или уменьшает шумовые параметры, чтобы достигнуть меньших ошибок расчета. Это свойство задает фактор уменьшения параметра во время шага уменьшения параметра.

Максимальное количество итераций позволено настраивающимся алгоритмом в виде положительного целого числа.

Стойте, в котором можно остановить настраивающий процесс в виде положительной скалярной величины.

Минимальное изменение в стоимости, чтобы продолжить настраиваться в виде неотрицательного скаляра. Если изменение в стоимости меньше, чем заданный допуск, настраивающие остановки процесса.

Позвольте показать детали итерации в виде "iter" или "none". Когда задано как:

  • "iter" — Программа показывает настроенные детали параметра в каждой итерации в Командном окне.

  • "none" — Программа не показывает информации о настройке.

Метрика для оценки эффективности фильтра в виде "RMS" или "Custom". Когда задано как:

  • "RMS" — Программа оптимизирует ошибку корневого среднеквадратического (RMS) между оценкой и истиной.

  • "Custom" — Программа оптимизирует эффективность фильтра при помощи индивидуально настраиваемой функции стоимости, заданной CustomCostFcn свойство.

Индивидуально настраиваемая функция стоимости в виде указателя на функцию.

Зависимости

Чтобы включить это свойство, установите Cost свойство к 'Custom'. Смотрите, что Пользовательское Настраивается примера Фильтров Fusion для получения дополнительной информации о том, как настроить функцию стоимости.

Выходную функцию вызывают на каждой итерации в виде указателя на функцию. Функция должна использовать следующий синтаксис:

stop = myOutputFcn(params,tunerValues)

params структура текущей наилучшей оценки каждого параметра в конце текущей итерации. tunerValues структура, содержащая информацию настройки тюнера, данных о датчике и данных об истине. Это имеет эти поля:

Имя поляОписание
IterationКоличество итерации тюнера в виде положительного целого числа
SensorDataВвод данных датчика к tune функция
GroundTruthВход основной истины к tune функция
Configurationtunerconfig объект используется для настройки
CostНастройка стоимости в конце текущей итерации

Совет

Можно использовать встроенную функцию tunerPlotPose визуализировать данные об истине и оценки для большинства ваших настраивающих приложений. Смотрите Визуализировать Настраивать Результаты Используя tunerPlotPose пример для деталей.

Примеры

свернуть все

Создайте объект tunerconfig для insfilterAsync объект.

config = tunerconfig('insfilterAsync')
config = 
  tunerconfig with properties:

      TunableParameters: [1×14 string]
            StepForward: 1.1000
           StepBackward: 0.5000
          MaxIterations: 20
    OptimalityTolerance: 0.1000
                Display: iter
                   Cost: RMS

Отобразите настраиваемые параметры по умолчанию.

config.TunableParameters
ans = 1×14 string
    "AccelerometerNoise"    "GyroscopeNoise"    "MagnetometerNoise"    "GPSPositionNoise"    "GPSVelocityNoise"    "QuaternionNoise"    "AngularVelocityNoise"    "PositionNoise"    "VelocityNoise"    "AccelerationNoise"    "GyroscopeBiasNoise"    "AccelerometerBiasNoise"    "GeomagneticVectorNoise"    "MagnetometerBiasNoise"

Загрузите записанные данные о датчике и достоверные данные.

load('insfilterAsyncTuneData.mat');

Создайте расписания для данных о датчике и данных об истине.

sensorData = timetable(Accelerometer, Gyroscope, ...
    Magnetometer, GPSPosition, GPSVelocity, 'SampleRate', 100);
groundTruth = timetable(Orientation, Position, ...
    'SampleRate', 100);

Создайте insfilterAsync объект фильтра, который имеет несколько шумовых свойств.

filter = insfilterAsync('State', initialState, ...
    'StateCovariance', initialStateCovariance, ...
    'AccelerometerBiasNoise', 1e-7, ...
    'GyroscopeBiasNoise', 1e-7, ...
    'MagnetometerBiasNoise', 1e-7, ...
    'GeomagneticVectorNoise', 1e-7);

Создайте объект настройки тюнера для фильтра. Установите максимальные итерации на два. Кроме того, установите настраиваемые параметры как незаданные свойства.

config = tunerconfig('insfilterAsync','MaxIterations',8);
config.TunableParameters = setdiff(config.TunableParameters, ...
    {'GeomagneticVectorNoise', 'AccelerometerBiasNoise', ...
    'GyroscopeBiasNoise', 'MagnetometerBiasNoise'});
config.TunableParameters
ans = 1×10 string
    "AccelerationNoise"    "AccelerometerNoise"    "AngularVelocityNoise"    "GPSPositionNoise"    "GPSVelocityNoise"    "GyroscopeNoise"    "MagnetometerNoise"    "PositionNoise"    "QuaternionNoise"    "VelocityNoise"

Используйте функцию шума тюнера, чтобы получить набор начальных шумов датчика, используемых в фильтре.

measNoise = tunernoise('insfilterAsync')
measNoise = struct with fields:
    AccelerometerNoise: 1
        GyroscopeNoise: 1
     MagnetometerNoise: 1
      GPSPositionNoise: 1
      GPSVelocityNoise: 1

Настройте фильтр и получите настроенные параметры.

tunedParams = tune(filter,measNoise,sensorData,groundTruth,config);
    Iteration    Parameter               Metric
    _________    _________               ______
    1            AccelerationNoise       2.1345
    1            AccelerometerNoise      2.1264
    1            AngularVelocityNoise    1.9659
    1            GPSPositionNoise        1.9341
    1            GPSVelocityNoise        1.8420
    1            GyroscopeNoise          1.7589
    1            MagnetometerNoise       1.7362
    1            PositionNoise           1.7362
    1            QuaternionNoise         1.7218
    1            VelocityNoise           1.7218
    2            AccelerationNoise       1.7190
    2            AccelerometerNoise      1.7170
    2            AngularVelocityNoise    1.6045
    2            GPSPositionNoise        1.5948
    2            GPSVelocityNoise        1.5323
    2            GyroscopeNoise          1.4803
    2            MagnetometerNoise       1.4703
    2            PositionNoise           1.4703
    2            QuaternionNoise         1.4632
    2            VelocityNoise           1.4632
    3            AccelerationNoise       1.4596
    3            AccelerometerNoise      1.4548
    3            AngularVelocityNoise    1.3923
    3            GPSPositionNoise        1.3810
    3            GPSVelocityNoise        1.3322
    3            GyroscopeNoise          1.2998
    3            MagnetometerNoise       1.2976
    3            PositionNoise           1.2976
    3            QuaternionNoise         1.2943
    3            VelocityNoise           1.2943
    4            AccelerationNoise       1.2906
    4            AccelerometerNoise      1.2836
    4            AngularVelocityNoise    1.2491
    4            GPSPositionNoise        1.2258
    4            GPSVelocityNoise        1.1880
    4            GyroscopeNoise          1.1701
    4            MagnetometerNoise       1.1698
    4            PositionNoise           1.1698
    4            QuaternionNoise         1.1688
    4            VelocityNoise           1.1688
    5            AccelerationNoise       1.1650
    5            AccelerometerNoise      1.1569
    5            AngularVelocityNoise    1.1454
    5            GPSPositionNoise        1.1100
    5            GPSVelocityNoise        1.0778
    5            GyroscopeNoise          1.0709
    5            MagnetometerNoise       1.0675
    5            PositionNoise           1.0675
    5            QuaternionNoise         1.0669
    5            VelocityNoise           1.0669
    6            AccelerationNoise       1.0634
    6            AccelerometerNoise      1.0549
    6            AngularVelocityNoise    1.0549
    6            GPSPositionNoise        1.0180
    6            GPSVelocityNoise        0.9866
    6            GyroscopeNoise          0.9810
    6            MagnetometerNoise       0.9775
    6            PositionNoise           0.9775
    6            QuaternionNoise         0.9768
    6            VelocityNoise           0.9768
    7            AccelerationNoise       0.9735
    7            AccelerometerNoise      0.9652
    7            AngularVelocityNoise    0.9652
    7            GPSPositionNoise        0.9283
    7            GPSVelocityNoise        0.8997
    7            GyroscopeNoise          0.8947
    7            MagnetometerNoise       0.8920
    7            PositionNoise           0.8920
    7            QuaternionNoise         0.8912
    7            VelocityNoise           0.8912
    8            AccelerationNoise       0.8885
    8            AccelerometerNoise      0.8811
    8            AngularVelocityNoise    0.8807
    8            GPSPositionNoise        0.8479
    8            GPSVelocityNoise        0.8238
    8            GyroscopeNoise          0.8165
    8            MagnetometerNoise       0.8165
    8            PositionNoise           0.8165
    8            QuaternionNoise         0.8159
    8            VelocityNoise           0.8159

Объедините данные о датчике с помощью настроенного фильтра.

dt = seconds(diff(groundTruth.Time));
N = size(sensorData,1);
qEst = quaternion.zeros(N,1);
posEst = zeros(N,3);
% Iterate the filter for prediction and correction using sensor data.
for ii=1:N
    if ii ~= 1
        predict(filter, dt(ii-1));
    end
    if all(~isnan(Accelerometer(ii,:)))
        fuseaccel(filter,Accelerometer(ii,:), ...
            tunedParams.AccelerometerNoise);
    end
    if all(~isnan(Gyroscope(ii,:)))
        fusegyro(filter, Gyroscope(ii,:), ...
            tunedParams.GyroscopeNoise);
    end
    if all(~isnan(Magnetometer(ii,1)))
        fusemag(filter, Magnetometer(ii,:), ...
            tunedParams.MagnetometerNoise);
    end
    if all(~isnan(GPSPosition(ii,1)))
        fusegps(filter, GPSPosition(ii,:), ...
            tunedParams.GPSPositionNoise, GPSVelocity(ii,:), ...
            tunedParams.GPSVelocityNoise);
    end
    [posEst(ii,:), qEst(ii,:)] = pose(filter);
end

Вычислите ошибки RMS.

orientationError = rad2deg(dist(qEst, Orientation));
rmsorientationError = sqrt(mean(orientationError.^2))
rmsorientationError = 2.7801
positionError = sqrt(sum((posEst - Position).^2, 2));
rmspositionError = sqrt(mean( positionError.^2))
rmspositionError = 0.5966

Визуализируйте результаты.

figure();
t = (0:N-1)./ groundTruth.Properties.SampleRate;
subplot(2,1,1)
plot(t, positionError, 'b');
title("Tuned insfilterAsync" + newline + "Euclidean Distance Position Error")
xlabel('Time (s)');
ylabel('Position Error (meters)')
subplot(2,1,2)
plot(t, orientationError, 'b');
title("Orientation Error")
xlabel('Time (s)');
ylabel('Orientation Error (degrees)');

Загрузите зарегистрированные данные о датчике и достоверные данные.

ld = load('imufilterTuneData.mat');
qTrue = ld.groundTruth.Orientation; % true orientation

Создайте imufilter возразите и плавьте фильтр с данными о датчике.

fuse = imufilter;
qEstUntuned = fuse(ld.sensorData.Accelerometer, ...
    ld.sensorData.Gyroscope);

Создайте tunerconfig возразите и настройте imufilter, чтобы улучшить оценку ориентации.

cfg = tunerconfig('imufilter');
tune(fuse, ld.sensorData, ld.groundTruth, cfg);
    Iteration    Parameter                        Metric
    _________    _________                        ______
    1            AccelerometerNoise               0.1149
    1            GyroscopeNoise                   0.1146
    1            GyroscopeDriftNoise              0.1146
    1            LinearAccelerationNoise          0.1122
    1            LinearAccelerationDecayFactor    0.1103
    2            AccelerometerNoise               0.1102
    2            GyroscopeNoise                   0.1098
    2            GyroscopeDriftNoise              0.1098
    2            LinearAccelerationNoise          0.1070
    2            LinearAccelerationDecayFactor    0.1053
    3            AccelerometerNoise               0.1053
    3            GyroscopeNoise                   0.1048
    3            GyroscopeDriftNoise              0.1048
    3            LinearAccelerationNoise          0.1016
    3            LinearAccelerationDecayFactor    0.1002
    4            AccelerometerNoise               0.1001
    4            GyroscopeNoise                   0.0996
    4            GyroscopeDriftNoise              0.0996
    4            LinearAccelerationNoise          0.0962
    4            LinearAccelerationDecayFactor    0.0950
    5            AccelerometerNoise               0.0950
    5            GyroscopeNoise                   0.0943
    5            GyroscopeDriftNoise              0.0943
    5            LinearAccelerationNoise          0.0910
    5            LinearAccelerationDecayFactor    0.0901
    6            AccelerometerNoise               0.0900
    6            GyroscopeNoise                   0.0893
    6            GyroscopeDriftNoise              0.0893
    6            LinearAccelerationNoise          0.0862
    6            LinearAccelerationDecayFactor    0.0855
    7            AccelerometerNoise               0.0855
    7            GyroscopeNoise                   0.0848
    7            GyroscopeDriftNoise              0.0848
    7            LinearAccelerationNoise          0.0822
    7            LinearAccelerationDecayFactor    0.0818
    8            AccelerometerNoise               0.0817
    8            GyroscopeNoise                   0.0811
    8            GyroscopeDriftNoise              0.0811
    8            LinearAccelerationNoise          0.0791
    8            LinearAccelerationDecayFactor    0.0789
    9            AccelerometerNoise               0.0788
    9            GyroscopeNoise                   0.0782
    9            GyroscopeDriftNoise              0.0782
    9            LinearAccelerationNoise          0.0769
    9            LinearAccelerationDecayFactor    0.0768
    10           AccelerometerNoise               0.0768
    10           GyroscopeNoise                   0.0762
    10           GyroscopeDriftNoise              0.0762
    10           LinearAccelerationNoise          0.0754
    10           LinearAccelerationDecayFactor    0.0753
    11           AccelerometerNoise               0.0753
    11           GyroscopeNoise                   0.0747
    11           GyroscopeDriftNoise              0.0747
    11           LinearAccelerationNoise          0.0741
    11           LinearAccelerationDecayFactor    0.0740
    12           AccelerometerNoise               0.0740
    12           GyroscopeNoise                   0.0734
    12           GyroscopeDriftNoise              0.0734
    12           LinearAccelerationNoise          0.0728
    12           LinearAccelerationDecayFactor    0.0728
    13           AccelerometerNoise               0.0728
    13           GyroscopeNoise                   0.0721
    13           GyroscopeDriftNoise              0.0721
    13           LinearAccelerationNoise          0.0715
    13           LinearAccelerationDecayFactor    0.0715
    14           AccelerometerNoise               0.0715
    14           GyroscopeNoise                   0.0706
    14           GyroscopeDriftNoise              0.0706
    14           LinearAccelerationNoise          0.0700
    14           LinearAccelerationDecayFactor    0.0700
    15           AccelerometerNoise               0.0700
    15           GyroscopeNoise                   0.0690
    15           GyroscopeDriftNoise              0.0690
    15           LinearAccelerationNoise          0.0684
    15           LinearAccelerationDecayFactor    0.0684
    16           AccelerometerNoise               0.0684
    16           GyroscopeNoise                   0.0672
    16           GyroscopeDriftNoise              0.0672
    16           LinearAccelerationNoise          0.0668
    16           LinearAccelerationDecayFactor    0.0667
    17           AccelerometerNoise               0.0667
    17           GyroscopeNoise                   0.0655
    17           GyroscopeDriftNoise              0.0655
    17           LinearAccelerationNoise          0.0654
    17           LinearAccelerationDecayFactor    0.0654
    18           AccelerometerNoise               0.0654
    18           GyroscopeNoise                   0.0641
    18           GyroscopeDriftNoise              0.0641
    18           LinearAccelerationNoise          0.0640
    18           LinearAccelerationDecayFactor    0.0639
    19           AccelerometerNoise               0.0639
    19           GyroscopeNoise                   0.0627
    19           GyroscopeDriftNoise              0.0627
    19           LinearAccelerationNoise          0.0627
    19           LinearAccelerationDecayFactor    0.0624
    20           AccelerometerNoise               0.0624
    20           GyroscopeNoise                   0.0614
    20           GyroscopeDriftNoise              0.0614
    20           LinearAccelerationNoise          0.0613
    20           LinearAccelerationDecayFactor    0.0613

Объедините данные о датчике снова с помощью настроенного фильтра.

qEstTuned = fuse(ld.sensorData.Accelerometer, ...
    ld.sensorData.Gyroscope);

Сравните настроенную и ненастроенную ошибочную эффективность RMS фильтра.

dUntuned = rad2deg(dist(qEstUntuned, qTrue));
dTuned = rad2deg(dist(qEstTuned, qTrue));
rmsUntuned = sqrt(mean(dUntuned.^2))
rmsUntuned = 6.5864
rmsTuned = sqrt(mean(dTuned.^2))
rmsTuned = 3.5098

Визуализируйте результаты.

N = numel(dUntuned);
t = (0:N-1)./ fuse.SampleRate;
plot(t, dUntuned, 'r', t, dTuned, 'b');
legend('Untuned', 'Tuned');
title('imufilter - Tuned vs Untuned Error')
xlabel('Time (s)');
ylabel('Orientation Error (degrees)');

Загрузите записанные данные о датчике и достоверные данные.

load('insfilterAsyncTuneData.mat');

Создайте расписания для данных о датчике и данных об истине.

sensorData = timetable(Accelerometer, Gyroscope, ...
    Magnetometer, GPSPosition, GPSVelocity, 'SampleRate', 100);
groundTruth = timetable(Orientation, Position, ...
    'SampleRate', 100);

Создайте insfilterAsync объект фильтра, который имеет несколько шумовых свойств.

filter = insfilterAsync('State', initialState, ...
    'StateCovariance', initialStateCovariance, ...
    'AccelerometerBiasNoise', 1e-7, ...
    'GyroscopeBiasNoise', 1e-7, ...
    'MagnetometerBiasNoise', 1e-7, ...
    'GeomagneticVectorNoise', 1e-7);

Создайте объект настройки тюнера для фильтра. Задайте OutputFcn свойство как индивидуально настраиваемая функция, myOutputFcn, который сохраняет последние настроенные параметры в файле MAT.

config = tunerconfig('insfilterAsync', ...
    'MaxIterations',5, ...
    'Display','none', ...
    'OutputFcn', @myOutputFcn);
config.TunableParameters = setdiff(config.TunableParameters, ...
    {'GeomagneticVectorNoise', 'AccelerometerBiasNoise', ...
    'GyroscopeBiasNoise', 'MagnetometerBiasNoise'});
config.TunableParameters
ans = 1x10 string
  Columns 1 through 3

    "AccelerationNoise"    "AccelerometerNoise"    "AngularVelocityN..."

  Columns 4 through 6

    "GPSPositionNoise"    "GPSVelocityNoise"    "GyroscopeNoise"

  Columns 7 through 9

    "MagnetometerNoise"    "PositionNoise"    "QuaternionNoise"

  Column 10

    "VelocityNoise"

Используйте функцию шума тюнера, чтобы получить набор начальных шумов датчика, используемых в фильтре.

measNoise = tunernoise('insfilterAsync')
measNoise = struct with fields:
    AccelerometerNoise: 1
        GyroscopeNoise: 1
     MagnetometerNoise: 1
      GPSPositionNoise: 1
      GPSVelocityNoise: 1

Настройте фильтр и получите настроенные параметры.

tunedParams = tune(filter,measNoise,sensorData,groundTruth,config);

Отобразите параметры сохранения с помощью сохраненного файла.

fileObject = matfile('myfile.mat');
fileObject.params
ans = struct with fields:
         AccelerationNoise: [88.8995 88.8995 88.8995]
    AccelerometerBiasNoise: [1.0000e-07 1.0000e-07 1.0000e-07]
        AccelerometerNoise: 0.7942
      AngularVelocityNoise: [0.0089 0.0089 0.0089]
          GPSPositionNoise: 1.1664
          GPSVelocityNoise: 0.5210
    GeomagneticVectorNoise: [1.0000e-07 1.0000e-07 1.0000e-07]
        GyroscopeBiasNoise: [1.0000e-07 1.0000e-07 1.0000e-07]
            GyroscopeNoise: 0.5210
     MagnetometerBiasNoise: [1.0000e-07 1.0000e-07 1.0000e-07]
         MagnetometerNoise: 1.0128
             PositionNoise: [5.2100e-07 5.2100e-07 5.2100e-07]
           QuaternionNoise: [1.3239e-06 1.3239e-06 1.3239e-06 1.3239e-06]
         ReferenceLocation: [0 0 0]
                     State: [28x1 double]
           StateCovariance: [28x28 double]
             VelocityNoise: [6.3678e-07 6.3678e-07 6.3678e-07]

Выходная функция

function stop = myOutputFcn(params, ~)
save('myfile.mat','params'); % overwrite the file with latest
stop = false;
end
Введенный в R2020b
Для просмотра документации необходимо авторизоваться на сайте