directivity

Системный объект: phased.UCA
Пакет: поэтапный

Направленность универсального кругового массива

Синтаксис

D = directivity(sArray,FREQ,ANGLE)
D = directivity(sArray,FREQ,ANGLE,Name,Value)

Описание

D = directivity(sArray,FREQ,ANGLE) возвращает Направленность (dBi) универсального кругового массива (UCA) антенны или элементов микрофона, sArray, на частотах, заданных FREQ и в углах направления задан ANGLE.

Интегрирование использовало, когда вычислительная направленность массивов имеет минимальную сетку выборки 0,1 градусов. Если диаграмма направленности антенной решетки имеет ширину луча, меньшую, чем это, значение направленности будет неточно.

D = directivity(sArray,FREQ,ANGLE,Name,Value) возвращает направленность с дополнительными опциями, заданными одним или несколькими Name,Value парные аргументы.

Входные параметры

развернуть все

Универсальный круговой массив в виде phased.UCA Системный объект.

Пример: sArray= phased.UCA;

Частоты для вычислительной направленности и шаблонов в виде положительной скалярной величины или 1 L вектором-строкой с действительным знаком. Единицы частоты находятся в герц.

  • Для антенны, микрофона, или гидрофона гидролокатора или элемента проектора, FREQ должен лечь в области значений значений, заданных FrequencyRange или FrequencyVector свойство элемента. В противном случае элемент не производит ответа, и направленность возвращена как –Inf. Большинство элементов использует FrequencyRange свойство за исключением phased.CustomAntennaElement и phased.CustomMicrophoneElement, которые используют FrequencyVector свойство.

  • Для массива элементов, FREQ должен лечь в частотном диапазоне элементов, которые составляют массив. В противном случае массив не производит ответа, и направленность возвращена как –Inf.

Пример: [1e8 2e6]

Типы данных: double

Углы для вычислительной направленности в виде 1 M вектором-строкой с действительным знаком или 2 M матрицей с действительным знаком, где M является количеством угловых направлений. Угловые модули в градусах. Если ANGLE 2 M матрицей, затем каждый столбец задает направление в азимуте и вертикальном изменении, [az;el]. Угол азимута должен находиться между-180 ° и 180 °. Угол возвышения должен находиться между-90 ° и 90 °.

Если ANGLE 1 M вектором, затем каждая запись представляет угол азимута с углом возвышения, принятым, чтобы быть нулем.

Угол азимута является углом между x - ось и проекцией вектора направления на плоскость xy. Этот угол положителен, когда измерено от x - оси к y - ось. Угол возвышения является углом между вектором направления и плоскостью xy. Этот угол положителен, когда измерено к z - ось. Смотрите Азимут и Углы возвышения.

Пример: [45 60; 0 10]

Типы данных: double

Аргументы name-value

Задайте дополнительные разделенные запятой пары Name,Value аргументы. Name имя аргумента и Value соответствующее значение. Name должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN.

Скорость распространения сигнала в виде разделенной запятой пары, состоящей из 'PropagationSpeed' и положительная скалярная величина в метрах в секунду.

Пример: 'PropagationSpeed',physconst('LightSpeed')

Типы данных: double

Веса массивов в виде разделенной запятой пары, состоящей из 'WeightsN-by-1 вектор-столбец с комплексным знаком или N-by-L матрица с комплексным знаком. Веса массивов применяются к элементам массива, чтобы произвести регулирование массивов, сужение или обоих. Размерность N является числом элементов в массиве. Размерность L является количеством частот, заданных FREQ.

Размерность весовРазмерность FREQЦель
N-by-1 вектор-столбец с комплексным знакомСкаляр или 1 L вектором-строкойПрименяет набор весов для одной частоты или для всех частот L.
N-by-L матрица с комплексным знаком1 L вектором-строкойПрименяет каждый из столбцов L 'Weights' для соответствующей частоты в FREQ.

Примечание

Используйте комплексные веса, чтобы регулировать ответ массивов к различным направлениям. Можно создать веса с помощью phased.SteeringVector Системный объект или вы можете вычислить ваши собственные веса. В общем случае вы применяете Эрмитово спряжение перед использованием весов в любом Phased Array System Toolbox™ функциональный или Системный объект, таких как phased.Radiator или phased.Collector. Однако для directivity, pattern, patternAzimuth, и patternElevation методы любого Системного объекта массивов используют держащийся вектор без спряжения.

Пример: 'Weights',ones(N,M)

Типы данных: double
Поддержка комплексного числа: Да

Выходные аргументы

развернуть все

Направленность, возвращенная как M-by-L матрица. Каждая строка соответствует одному из углов M, заданных ANGLE. Каждый столбец соответствует одному из значений частоты L, заданных в FREQ. Модули направленности находятся в dBi, где dBi задан как усиление элемента относительно изотропного излучателя.

Примеры

развернуть все

Вычислите направленность двух универсальных круговых массивов (UCA) в нулевом азимуте степеней и вертикальном изменении. Первый массив состоит из изотропных антенных элементов. Второй массив состоит из антенных элементов косинуса. Кроме того, вычислите направленность массива элемента косинуса, управляемого к 45 вертикальным изменениям степеней.

Массив изотропных антенных элементов

Во-первых, создайте UCA с 10 элементами с радиусом половины метра, состоящего из изотропных антенных элементов. Установите частоту сигнала на 300 МГц.

c = physconst('LightSpeed');
fc = 300e6;
sIso = phased.IsotropicAntennaElement;
sArray = phased.UCA('Element',sIso,'NumElements',10,'Radius',0.5);
ang = [0;0];
d = directivity(sArray,fc,ang,'PropagationSpeed',c)
d = -1.1423

Массив антенных элементов косинуса

Затем создайте UCA с 10 элементами антенных элементов косинуса также с 0,5-метровым радиусом.

sCos = phased.CosineAntennaElement('CosinePower',[3,3]);
sArray1 = phased.UCA('Element',sCos,'NumElements',10,'Radius',0.5);
ang = [0;0];
d = directivity(sArray1,fc,ang,'PropagationSpeed',c)
d = 3.2550

Направленность увеличена из-за добавленной направленности антенных элементов косинуса.

Управляемый массив антенных элементов косинуса

Наконец, регулируйте антенную решетку косинуса к 45 вертикальным изменениям степеней, и затем исследуйте направленность в 45 градусах.

ang = [0;45];
lambda = c/fc;
w = steervec(getElementPosition(sArray1)/lambda,ang);
d = directivity(sArray1,fc,ang,'PropagationSpeed',c,...
    'Weights',w)
d = -3.1410

Направленность уменьшена из-за объединенного сокращения направленности элементов и массива.

Больше о

развернуть все

Смотрите также

| |

Представленный в R2015a
Для просмотра документации необходимо авторизоваться на сайте