В этом примере показано, как обучить агента глубоко детерминированного градиента политики (DDPG) управлять динамической системой второго порядка, смоделированной в MATLAB®.
Для получения дополнительной информации об агентах DDPG смотрите Глубоко Детерминированных Агентов Градиента политики. Для примера, показывающего, как обучить агента DDPG в Simulink®, смотрите, Обучают Агента DDPG к Swing и Маятнику Баланса.
Среда обучения с подкреплением для этого примера является системой двойного интегратора второго порядка с усилением. Цель обучения должна управлять положением массы в системе второго порядка путем применения входа силы.
Для этой среды:
Масса запускается в исходном положении между –4 и 4 модулями.
Сигнал действия силы от агента до среды от –2 до 2 Н.
Наблюдения средой являются положением и скоростью массы.
Эпизод завершает работу, если масса перемещает больше чем 5 м от исходного положения или если .
Вознаграждение , если на каждом временном шаге, дискретизация :
Здесь:
вектор состояния массы.
сила, применился к массе.
веса на эффективности управления; .
вес на усилии по управлению; .
Для получения дополнительной информации об этой модели смотрите Загрузку Предопределенные Среды Системы управления.
Создайте предопределенный интерфейс среды для двойной системы интегратора.
env = rlPredefinedEnv("DoubleIntegrator-Continuous")
env = DoubleIntegratorContinuousAction with properties: Gain: 1 Ts: 0.1000 MaxDistance: 5 GoalThreshold: 0.0100 Q: [2x2 double] R: 0.0100 MaxForce: Inf State: [2x1 double]
env.MaxForce = Inf;
Интерфейс имеет непрерывное пространство действий, где агент может применить значения силы от-Inf
к Inf
к массе.
Получите информацию о наблюдении и действии из интерфейса среды.
obsInfo = getObservationInfo(env); numObservations = obsInfo.Dimension(1); actInfo = getActionInfo(env); numActions = numel(actInfo);
Для повторяемости результатов зафиксируйте начальное значение генератора случайных чисел.
rng(0)
Агент DDPG аппроксимирует долгосрочное вознаграждение, заданные наблюдения и действия, с помощью представления функции ценности критика. Чтобы создать критика, сначала создайте глубокую нейронную сеть с двумя входными параметрами (состояние и действие) и один выход. Для получения дополнительной информации о создании представления функции ценности нейронной сети смотрите, Создают Представления Функции ценности и политика.
statePath = featureInputLayer(numObservations,'Normalization','none','Name','state'); actionPath = featureInputLayer(numActions,'Normalization','none','Name','action'); commonPath = [concatenationLayer(1,2,'Name','concat') quadraticLayer('Name','quadratic') fullyConnectedLayer(1,'Name','StateValue','BiasLearnRateFactor',0,'Bias',0)]; criticNetwork = layerGraph(statePath); criticNetwork = addLayers(criticNetwork,actionPath); criticNetwork = addLayers(criticNetwork,commonPath); criticNetwork = connectLayers(criticNetwork,'state','concat/in1'); criticNetwork = connectLayers(criticNetwork,'action','concat/in2');
Просмотрите конфигурацию сети критика.
figure plot(criticNetwork)
Задайте опции для представления критика с помощью rlRepresentationOptions
.
criticOpts = rlRepresentationOptions('LearnRate',5e-3,'GradientThreshold',1);
Создайте представление критика с помощью заданной нейронной сети и опций. Необходимо также задать информацию о действии и наблюдении для критика, которого вы получаете из интерфейса среды. Для получения дополнительной информации смотрите rlQValueRepresentation
.
critic = rlQValueRepresentation(criticNetwork,obsInfo,actInfo,'Observation',{'state'},'Action',{'action'},criticOpts);
Агент DDPG решает который действие взять, заданные наблюдения, с помощью представления актера. Чтобы создать агента, сначала создайте глубокую нейронную сеть с одним входом (наблюдение) и один выход (действие).
Создайте агента подобным образом критику.
actorNetwork = [ featureInputLayer(numObservations,'Normalization','none','Name','state') fullyConnectedLayer(numActions,'Name','action','BiasLearnRateFactor',0,'Bias',0)]; actorOpts = rlRepresentationOptions('LearnRate',1e-04,'GradientThreshold',1); actor = rlDeterministicActorRepresentation(actorNetwork,obsInfo,actInfo,'Observation',{'state'},'Action',{'action'},actorOpts);
Чтобы создать агента DDPG, сначала задайте опции агента DDPG с помощью rlDDPGAgentOptions
.
agentOpts = rlDDPGAgentOptions(... 'SampleTime',env.Ts,... 'TargetSmoothFactor',1e-3,... 'ExperienceBufferLength',1e6,... 'DiscountFactor',0.99,... 'MiniBatchSize',32); agentOpts.NoiseOptions.Variance = 0.3; agentOpts.NoiseOptions.VarianceDecayRate = 1e-6;
Создайте агента DDPG с помощью заданного представления актера, представления критика и опций агента. Для получения дополнительной информации смотрите rlDDPGAgent
.
agent = rlDDPGAgent(actor,critic,agentOpts);
Чтобы обучить агента, сначала задайте опции обучения. В данном примере используйте следующие опции.
Запустите самое большее 1 000 эпизодов на сеансе обучения с каждым эпизодом, длящимся самое большее 200 временных шагов.
Отобразите прогресс обучения в диалоговом окне Episode Manager (установите Plots
опция), и отключают отображение командной строки (установите Verbose
опция).
Остановите обучение, когда агент получит скользящее среднее значение совокупное вознаграждение, больше, чем –66. На данном этапе агент может управлять положением массы с помощью минимального усилия по управлению.
Для получения дополнительной информации смотрите rlTrainingOptions
.
trainOpts = rlTrainingOptions(... 'MaxEpisodes', 5000, ... 'MaxStepsPerEpisode', 200, ... 'Verbose', false, ... 'StopTrainingCriteria','AverageReward',... 'StopTrainingValue',-66);
Можно визуализировать двойную среду интегратора при помощи plot
функция во время обучения или симуляции.
plot(env)
Обучите агента с помощью train
функция. Обучение этот агент является в вычислительном отношении интенсивным процессом, который занимает несколько часов, чтобы завершиться. Чтобы сэкономить время при выполнении этого примера, загрузите предварительно обученного агента установкой doTraining
к false
. Чтобы обучить агента самостоятельно, установите doTraining
к true
.
doTraining = false; if doTraining % Train the agent. trainingStats = train(agent,env,trainOpts); else % Load the pretrained agent for the example. load('DoubleIntegDDPG.mat','agent'); end
Чтобы подтвердить производительность обученного агента, симулируйте его в двойной среде интегратора. Для получения дополнительной информации о симуляции агента смотрите rlSimulationOptions
и sim
.
simOptions = rlSimulationOptions('MaxSteps',500);
experience = sim(env,agent,simOptions);
totalReward = sum(experience.Reward)
totalReward = single
-65.9933