verify

Проверьте SimBiology.Scenarios объект

Синтаксис

Описание

пример

verify(sObj,model) проверяет SimBiology.Scenarios объект sObj и проверки, можно ли симулировать его сценарии с данным SimBiology model.

Функция выдает ошибку, если какая-либо запись не решает исключительно к объекту в model или содержимое записи имеет противоречивые длины. Функция выдает предупреждение, если многократные въезды решают к тому же объекту в model.

Примеры

свернуть все

Загрузите модель ответа инсулина глюкозы. Для получения дополнительной информации о модели, смотрите раздел Background в Симуляции Ответа Инсулина Глюкозы.

sbioloadproject('insulindemo','m1');

Модель содержит различные значения параметров и начальные условия, который представляет различные ухудшения инсулина (такие как диабет 2 типа, низкая чувствительность инсулина, и так далее) сохраненный в пяти вариантах.

variants = getvariant(m1)
variants = 
   SimBiology Variant Array

   Index:  Name:             Active:
   1       Type 2 diabetic   false
   2       Low insulin se... false
   3       High beta cell... false
   4       Low beta cell ... false
   5       High insulin s... false

Подавите информационное предупреждение, которое выдано во время симуляций.

warnSettings = warning('off','SimBiology:DimAnalysisNotDone_MatlabFcn_Dimensionless');

Выберите дозу, которая представляет одну еду 78 граммов глюкозы.

singleMeal = sbioselect(m1,'Name','Single Meal');

Создайте Scenarios объект представлять различные начальные условия, объединенные дозой. Таким образом, создайте scenario возразите, где каждый вариант соединен (или объединен) с дозой, для в общей сложности пяти сценариев симуляции.

sObj = SimBiology.Scenarios;
add(sObj,'cartesian','variants',variants);
add(sObj,'cartesian','dose',singleMeal)
ans = 
  Scenarios (5 scenarios)

                   Name            Content          Number
                 ________    ___________________    ______

    Entry 1      variants    SimBiology variants      5   
    x Entry 2    dose        SimBiology dose          1   

  See also Expression property.

sObj содержит две записи. Используйте generate функционируйте, чтобы объединить записи и сгенерировать пять сценариев. Функция возвращает таблицу сценариев, где каждая строка представляет сценарий, и каждый столбец представляет запись Scenarios объект.

scenariosTbl = generate(sObj)
scenariosTbl=5×2 table
           variants                     dose           
    ______________________    _________________________

    1x1 SimBiology.Variant    1x1 SimBiology.RepeatDose
    1x1 SimBiology.Variant    1x1 SimBiology.RepeatDose
    1x1 SimBiology.Variant    1x1 SimBiology.RepeatDose
    1x1 SimBiology.Variant    1x1 SimBiology.RepeatDose
    1x1 SimBiology.Variant    1x1 SimBiology.RepeatDose

Поменяйте имя записи первой записи.

rename(sObj,1,'Insulin Impairements')
ans = 
  Scenarios (5 scenarios)

                         Name                  Content          Number
                 ____________________    ___________________    ______

    Entry 1      Insulin Impairements    SimBiology variants      5   
    x Entry 2    dose                    SimBiology dose          1   

  See also Expression property.

Создайте SimFunction объект симулировать сгенерированные сценарии. Используйте Scenarios возразите как вход и задайте плазменные концентрации глюкозы и инсулина как reponses (выходные параметры функции, которая будет построена). Задайте [] для входного параметра дозы начиная с Scenarios объект уже имеет информацию о дозах.

f = createSimFunction(m1,sObj,{'[Plasma Glu Conc]','[Plasma Ins Conc]'},[])
f = 
SimFunction

Parameters:

              Name               Value         Type                            Units                   
    _________________________    ______    _____________    ___________________________________________

    {'Plasma Volume (Glu)'  }      1.88    {'parameter'}    {'deciliter'                              }
    {'k1'                   }     0.065    {'parameter'}    {'1/minute'                               }
    {'k2'                   }     0.079    {'parameter'}    {'1/minute'                               }
    {'Plasma Volume (Ins)'  }      0.05    {'parameter'}    {'liter'                                  }
    {'m1'                   }      0.19    {'parameter'}    {'1/minute'                               }
    {'m2'                   }     0.484    {'parameter'}    {'1/minute'                               }
    {'m4'                   }    0.1936    {'parameter'}    {'1/minute'                               }
    {'m5'                   }    0.0304    {'parameter'}    {'minute/picomole'                        }
    {'m6'                   }    0.6469    {'parameter'}    {'dimensionless'                          }
    {'Hepatic Extraction'   }       0.6    {'parameter'}    {'dimensionless'                          }
    {'kmax'                 }    0.0558    {'parameter'}    {'1/minute'                               }
    {'kmin'                 }     0.008    {'parameter'}    {'1/minute'                               }
    {'kabs'                 }    0.0568    {'parameter'}    {'1/minute'                               }
    {'kgri'                 }         0    {'parameter'}    {'1/minute'                               }
    {'f'                    }       0.9    {'parameter'}    {'dimensionless'                          }
    {'a'                    }         0    {'parameter'}    {'1/milligram'                            }
    {'b'                    }      0.82    {'parameter'}    {'dimensionless'                          }
    {'c'                    }         0    {'parameter'}    {'1/milligram'                            }
    {'d'                    }      0.01    {'parameter'}    {'dimensionless'                          }
    {'kp1'                  }       2.7    {'parameter'}    {'milligram/minute'                       }
    {'kp2'                  }    0.0021    {'parameter'}    {'1/minute'                               }
    {'kp3'                  }     0.009    {'parameter'}    {'(milligram/minute)/(picomole/liter)'    }
    {'kp4'                  }    0.0618    {'parameter'}    {'(milligram/minute)/picomole'            }
    {'ki'                   }    0.0079    {'parameter'}    {'1/minute'                               }
    {'[Ins Ind Glu Util]'   }         1    {'parameter'}    {'milligram/minute'                       }
    {'Vm0'                  }    2.5129    {'parameter'}    {'milligram/minute'                       }
    {'Vmx'                  }     0.047    {'parameter'}    {'(milligram/minute)/(picomole/liter)'    }
    {'Km'                   }    225.59    {'parameter'}    {'milligram'                              }
    {'p2U'                  }    0.0331    {'parameter'}    {'1/minute'                               }
    {'K'                    }      2.28    {'parameter'}    {'picomole/(milligram/deciliter)'         }
    {'alpha'                }      0.05    {'parameter'}    {'1/minute'                               }
    {'beta'                 }      0.11    {'parameter'}    {'(picomole/minute)/(milligram/deciliter)'}
    {'gamma'                }       0.5    {'parameter'}    {'1/minute'                               }
    {'ke1'                  }    0.0005    {'parameter'}    {'1/minute'                               }
    {'ke2'                  }       339    {'parameter'}    {'milligram'                              }
    {'Basal Plasma Glu Conc'}     91.76    {'parameter'}    {'milligram/deciliter'                    }
    {'Basal Plasma Ins Conc'}     25.49    {'parameter'}    {'picomole/liter'                         }

Observables: 

            Name                Type                 Units         
    _____________________    ___________    _______________________

    {'[Plasma Glu Conc]'}    {'species'}    {'milligram/deciliter'}
    {'[Plasma Ins Conc]'}    {'species'}    {'picomole/liter'     }

Dosed: 

    TargetName       TargetDimension   
    __________    _____________________

     {'Dose'}     {'Mass (e.g., gram)'}


TimeUnits: hour

Симулируйте модель в течение 24 часов и постройте данные моделирования. Данные содержат пять запусков, где каждый запуск представляет сценарий в объекте Scenarios.

sd = f(sObj,24);
sbioplot(sd)

Figure contains an axes object. The axes object with title States versus Time contains 10 objects of type line. These objects represent Run 1 - Glucose appearance.Plasma Glu Conc, Run 1 - Insulin secretion.Plasma Ins Conc, Run 2 - Glucose appearance.Plasma Glu Conc, Run 2 - Insulin secretion.Plasma Ins Conc, Run 3 - Glucose appearance.Plasma Glu Conc, Run 3 - Insulin secretion.Plasma Ins Conc, Run 4 - Glucose appearance.Plasma Glu Conc, Run 4 - Insulin secretion.Plasma Ins Conc, Run 5 - Glucose appearance.Plasma Glu Conc, Run 5 - Insulin secretion.Plasma Ins Conc.

ans = 
  Axes (SbioPlot) with properties:

             XLim: [0 25]
             YLim: [0 450]
           XScale: 'linear'
           YScale: 'linear'
    GridLineStyle: '-'
         Position: [0.0744 0.1100 0.3901 0.8150]
            Units: 'normalized'

  Show all properties

Если у вас есть Statistics and Machine Learning Toolbox™, можно также чертить демонстрационные значения для количеств модели от различных вероятностных распределений. Например, предположите что параметры Vmx и kp3, которые известны низкой и высокой чувствительностью инсулина, следуют за логарифмически нормальным распределением. Можно сгенерировать демонстрационные значения для этих параметров от такого распределения и выполнить скан, чтобы исследовать поведение модели.

Задайте логарифмически нормальный объект вероятностного распределения для Vmx.

pd_Vmx = makedist('lognormal')
pd_Vmx = 
  LognormalDistribution

  Lognormal distribution
       mu = 0
    sigma = 1

По определению, параметр mu среднее значение логарифмических значений. Чтобы варьироваться значение параметров вокруг основного значения (модели) параметра, установите mu к log(model_value). Установите стандартное отклонение (сигма) на 0,2. Для маленького значения сигмы среднее значение логарифмически нормального distribtion приблизительно равно log(model_value). Для получения дополнительной информации смотрите Логарифмически нормальное Распределение (Statistics and Machine Learning Toolbox).

Vmx = sbioselect(m1,'Name','Vmx');
pd_Vmx.mu = log(Vmx.Value);
pd_Vmx.sigma = 0.2
pd_Vmx = 
  LognormalDistribution

  Lognormal distribution
       mu = -3.05761
    sigma =      0.2

Так же задайте вероятностное распределение для kp3.

pd_kp3 = makedist('lognormal');
kp3 = sbioselect(m1,'Name','kp3');
pd_kp3.mu = log(kp3.Value);
pd_kp3.sigma = 0.2
pd_kp3 = 
  LognormalDistribution

  Lognormal distribution
       mu = -4.71053
    sigma =      0.2

Теперь задайте объединенное вероятностное распределение, чтобы чертить демонстрационные значения для Vmx и kp3 с порядковой корреляцией, чтобы задать некоторую корреляцию между этими двумя параметрами. Обратите внимание на то, что это предположение корреляции в целях рисунка этого примера только и не может быть биологически релевантным.

Сначала удалите запись вариантов (запись 1) от sObj.

remove(sObj,1)
ans = 
  Scenarios (1 scenarios)

               Name        Content        Number
               ____    _______________    ______

    Entry 1    dose    SimBiology dose      1   

  See also Expression property.

Добавьте запись, которая задает объединенное вероятностное распределение с матрицей порядковой корреляции.

add(sObj,'cartesian',["Vmx","kp3"],[pd_Vmx, pd_kp3],'RankCorrelation',[1,0.5;0.5,1])
ans = 
  Scenarios (2 scenarios)

                    Name           Content              Number   
                    ____    ______________________    ___________

    Entry 1         dose    SimBiology dose           1          
    x (Entry 2.1    Vmx     Lognormal distribution    2 (default)
    + Entry 2.2)    kp3     Lognormal distribution    2 (default)

  See also Expression property.

По умолчанию количество отсчетов, чтобы чертить от совместного распределения установлено в 2. Увеличьте количество отсчетов.

updateEntry(sObj,2,'Number',50)
ans = 
  Scenarios (50 scenarios)

                    Name           Content            Number
                    ____    ______________________    ______

    Entry 1         dose    SimBiology dose             1   
    x (Entry 2.1    Vmx     Lognormal distribution      50  
    + Entry 2.2)    kp3     Lognormal distribution      50  

  See also Expression property.

Проверьте что Scenarios объект может быть симулирован с моделью. verify функционируйте выдает ошибку, если какая-либо запись не решает исключительно к объекту в модели, или содержимое записи имеет противоречивые длины (объемы выборки). Функция выдает предупреждение, если многократные въезды решают к тому же объекту в модели.

verify(sObj,m1)

Сгенерируйте сценарии симуляции. Постройте демонстрационные значения с помощью plotmatrix. Вы видите значение Vmx варьируется вокруг его значения модели 0.047 и тот из kp3 приблизительно 0,009.

sTbl = generate(sObj);
[s,ax,bigax,h,hax] = plotmatrix([sTbl.Vmx,sTbl.kp3]);
ax(1,1).YLabel.String = "Vmx";
ax(2,1).YLabel.String = "kp3";
ax(2,1).XLabel.String = "Vmx";
ax(2,2).XLabel.String = "kp3";

MATLAB figure

Симулируйте сценарии с помощью того же SimFunction, который вы создали ранее. Вы не должны создавать новый объект SimFunction даже при том, что объект Scenarios был обновлен.

sd2 = f(sObj,24);
sbioplot(sd2);

Figure contains an axes object. The axes object with title States versus Time contains 100 objects of type line. These objects represent Run 1 - Glucose appearance.Plasma Glu Conc, Run 1 - Insulin secretion.Plasma Ins Conc, Run 2 - Glucose appearance.Plasma Glu Conc, Run 2 - Insulin secretion.Plasma Ins Conc, Run 3 - Glucose appearance.Plasma Glu Conc, Run 3 - Insulin secretion.Plasma Ins Conc, Run 4 - Glucose appearance.Plasma Glu Conc, Run 4 - Insulin secretion.Plasma Ins Conc, Run 5 - Glucose appearance.Plasma Glu Conc, Run 5 - Insulin secretion.Plasma Ins Conc, Run 6 - Glucose appearance.Plasma Glu Conc, Run 6 - Insulin secretion.Plasma Ins Conc, Run 7 - Glucose appearance.Plasma Glu Conc, Run 7 - Insulin secretion.Plasma Ins Conc, Run 8 - Glucose appearance.Plasma Glu Conc, Run 8 - Insulin secretion.Plasma Ins Conc, Run 9 - Glucose appearance.Plasma Glu Conc, Run 9 - Insulin secretion.Plasma Ins Conc, Run 10 - Glucose appearance.Plasma Glu Conc, Run 10 - Insulin secretion.Plasma Ins Conc, Run 11 - Glucose appearance.Plasma Glu Conc, Run 11 - Insulin secretion.Plasma Ins Conc, Run 12 - Glucose appearance.Plasma Glu Conc, Run 12 - Insulin secretion.Plasma Ins Conc, Run 13 - Glucose appearance.Plasma Glu Conc, Run 13 - Insulin secretion.Plasma Ins Conc, Run 14 - Glucose appearance.Plasma Glu Conc, Run 14 - Insulin secretion.Plasma Ins Conc, Run 15 - Glucose appearance.Plasma Glu Conc, Run 15 - Insulin secretion.Plasma Ins Conc, Run 16 - Glucose appearance.Plasma Glu Conc, Run 16 - Insulin secretion.Plasma Ins Conc, Run 17 - Glucose appearance.Plasma Glu Conc, Run 17 - Insulin secretion.Plasma Ins Conc, Run 18 - Glucose appearance.Plasma Glu Conc, Run 18 - Insulin secretion.Plasma Ins Conc, Run 19 - Glucose appearance.Plasma Glu Conc, Run 19 - Insulin secretion.Plasma Ins Conc, Run 20 - Glucose appearance.Plasma Glu Conc, Run 20 - Insulin secretion.Plasma Ins Conc, Run 21 - Glucose appearance.Plasma Glu Conc, Run 21 - Insulin secretion.Plasma Ins Conc, Run 22 - Glucose appearance.Plasma Glu Conc, Run 22 - Insulin secretion.Plasma Ins Conc, Run 23 - Glucose appearance.Plasma Glu Conc, Run 23 - Insulin secretion.Plasma Ins Conc, Run 24 - Glucose appearance.Plasma Glu Conc, Run 24 - Insulin secretion.Plasma Ins Conc, Run 25 - Glucose appearance.Plasma Glu Conc, Run 25 - Insulin secretion.Plasma Ins Conc, Run 26 - Glucose appearance.Plasma Glu Conc, Run 26 - Insulin secretion.Plasma Ins Conc, Run 27 - Glucose appearance.Plasma Glu Conc, Run 27 - Insulin secretion.Plasma Ins Conc, Run 28 - Glucose appearance.Plasma Glu Conc, Run 28 - Insulin secretion.Plasma Ins Conc, Run 29 - Glucose appearance.Plasma Glu Conc, Run 29 - Insulin secretion.Plasma Ins Conc, Run 30 - Glucose appearance.Plasma Glu Conc, Run 30 - Insulin secretion.Plasma Ins Conc, Run 31 - Glucose appearance.Plasma Glu Conc, Run 31 - Insulin secretion.Plasma Ins Conc, Run 32 - Glucose appearance.Plasma Glu Conc, Run 32 - Insulin secretion.Plasma Ins Conc, Run 33 - Glucose appearance.Plasma Glu Conc, Run 33 - Insulin secretion.Plasma Ins Conc, Run 34 - Glucose appearance.Plasma Glu Conc, Run 34 - Insulin secretion.Plasma Ins Conc, Run 35 - Glucose appearance.Plasma Glu Conc, Run 35 - Insulin secretion.Plasma Ins Conc, Run 36 - Glucose appearance.Plasma Glu Conc, Run 36 - Insulin secretion.Plasma Ins Conc, Run 37 - Glucose appearance.Plasma Glu Conc, Run 37 - Insulin secretion.Plasma Ins Conc, Run 38 - Glucose appearance.Plasma Glu Conc, Run 38 - Insulin secretion.Plasma Ins Conc, Run 39 - Glucose appearance.Plasma Glu Conc, Run 39 - Insulin secretion.Plasma Ins Conc, Run 40 - Glucose appearance.Plasma Glu Conc, Run 40 - Insulin secretion.Plasma Ins Conc, Run 41 - Glucose appearance.Plasma Glu Conc, Run 41 - Insulin secretion.Plasma Ins Conc, Run 42 - Glucose appearance.Plasma Glu Conc, Run 42 - Insulin secretion.Plasma Ins Conc, Run 43 - Glucose appearance.Plasma Glu Conc, Run 43 - Insulin secretion.Plasma Ins Conc, Run 44 - Glucose appearance.Plasma Glu Conc, Run 44 - Insulin secretion.Plasma Ins Conc, Run 45 - Glucose appearance.Plasma Glu Conc, Run 45 - Insulin secretion.Plasma Ins Conc, Run 46 - Glucose appearance.Plasma Glu Conc, Run 46 - Insulin secretion.Plasma Ins Conc, Run 47 - Glucose appearance.Plasma Glu Conc, Run 47 - Insulin secretion.Plasma Ins Conc, Run 48 - Glucose appearance.Plasma Glu Conc, Run 48 - Insulin secretion.Plasma Ins Conc, Run 49 - Glucose appearance.Plasma Glu Conc, Run 49 - Insulin secretion.Plasma Ins Conc, Run 50 - Glucose appearance.Plasma Glu Conc, Run 50 - Insulin secretion.Plasma Ins Conc.

По умолчанию SimBiology использует случайный метод выборки. Можно изменить его в латинскую выборку гиперкуба (или sobol или Холтон) для более систематического заполняющего пространство подхода.

entry2struct = getEntry(sObj,2)
entry2struct = struct with fields:
               Name: {'Vmx'  'kp3'}
            Content: [2x1 prob.LognormalDistribution]
             Number: 50
    RankCorrelation: [2x2 double]
         Covariance: []
     SamplingMethod: 'random'
    SamplingOptions: [0x0 struct]

entry2struct.SamplingMethod = 'lhs'
entry2struct = struct with fields:
               Name: {'Vmx'  'kp3'}
            Content: [2x1 prob.LognormalDistribution]
             Number: 50
    RankCorrelation: [2x2 double]
         Covariance: []
     SamplingMethod: 'lhs'
    SamplingOptions: [0x0 struct]

Можно теперь использовать обновленную структуру, чтобы изменить запись 2.

updateEntry(sObj,2,entry2struct)
ans = 
  Scenarios (50 scenarios)

                    Name           Content            Number
                    ____    ______________________    ______

    Entry 1         dose    SimBiology dose             1   
    x (Entry 2.1    Vmx     Lognormal distribution      50  
    + Entry 2.2)    kp3     Lognormal distribution      50  

  See also Expression property.

Визуализируйте демонстрационные значения.

sTbl2 = generate(sObj);
[s,ax,bigax,h,hax] = plotmatrix([sTbl2.Vmx,sTbl2.kp3]);
ax(1,1).YLabel.String = "Vmx";
ax(2,1).YLabel.String = "kp3";
ax(2,1).XLabel.String = "Vmx";
ax(2,2).XLabel.String = "kp3";

MATLAB figure

Симулируйте сценарии.

sd3 = f(sObj,24);
sbioplot(sd3);

Figure contains an axes object. The axes object with title States versus Time contains 100 objects of type line. These objects represent Run 1 - Glucose appearance.Plasma Glu Conc, Run 1 - Insulin secretion.Plasma Ins Conc, Run 2 - Glucose appearance.Plasma Glu Conc, Run 2 - Insulin secretion.Plasma Ins Conc, Run 3 - Glucose appearance.Plasma Glu Conc, Run 3 - Insulin secretion.Plasma Ins Conc, Run 4 - Glucose appearance.Plasma Glu Conc, Run 4 - Insulin secretion.Plasma Ins Conc, Run 5 - Glucose appearance.Plasma Glu Conc, Run 5 - Insulin secretion.Plasma Ins Conc, Run 6 - Glucose appearance.Plasma Glu Conc, Run 6 - Insulin secretion.Plasma Ins Conc, Run 7 - Glucose appearance.Plasma Glu Conc, Run 7 - Insulin secretion.Plasma Ins Conc, Run 8 - Glucose appearance.Plasma Glu Conc, Run 8 - Insulin secretion.Plasma Ins Conc, Run 9 - Glucose appearance.Plasma Glu Conc, Run 9 - Insulin secretion.Plasma Ins Conc, Run 10 - Glucose appearance.Plasma Glu Conc, Run 10 - Insulin secretion.Plasma Ins Conc, Run 11 - Glucose appearance.Plasma Glu Conc, Run 11 - Insulin secretion.Plasma Ins Conc, Run 12 - Glucose appearance.Plasma Glu Conc, Run 12 - Insulin secretion.Plasma Ins Conc, Run 13 - Glucose appearance.Plasma Glu Conc, Run 13 - Insulin secretion.Plasma Ins Conc, Run 14 - Glucose appearance.Plasma Glu Conc, Run 14 - Insulin secretion.Plasma Ins Conc, Run 15 - Glucose appearance.Plasma Glu Conc, Run 15 - Insulin secretion.Plasma Ins Conc, Run 16 - Glucose appearance.Plasma Glu Conc, Run 16 - Insulin secretion.Plasma Ins Conc, Run 17 - Glucose appearance.Plasma Glu Conc, Run 17 - Insulin secretion.Plasma Ins Conc, Run 18 - Glucose appearance.Plasma Glu Conc, Run 18 - Insulin secretion.Plasma Ins Conc, Run 19 - Glucose appearance.Plasma Glu Conc, Run 19 - Insulin secretion.Plasma Ins Conc, Run 20 - Glucose appearance.Plasma Glu Conc, Run 20 - Insulin secretion.Plasma Ins Conc, Run 21 - Glucose appearance.Plasma Glu Conc, Run 21 - Insulin secretion.Plasma Ins Conc, Run 22 - Glucose appearance.Plasma Glu Conc, Run 22 - Insulin secretion.Plasma Ins Conc, Run 23 - Glucose appearance.Plasma Glu Conc, Run 23 - Insulin secretion.Plasma Ins Conc, Run 24 - Glucose appearance.Plasma Glu Conc, Run 24 - Insulin secretion.Plasma Ins Conc, Run 25 - Glucose appearance.Plasma Glu Conc, Run 25 - Insulin secretion.Plasma Ins Conc, Run 26 - Glucose appearance.Plasma Glu Conc, Run 26 - Insulin secretion.Plasma Ins Conc, Run 27 - Glucose appearance.Plasma Glu Conc, Run 27 - Insulin secretion.Plasma Ins Conc, Run 28 - Glucose appearance.Plasma Glu Conc, Run 28 - Insulin secretion.Plasma Ins Conc, Run 29 - Glucose appearance.Plasma Glu Conc, Run 29 - Insulin secretion.Plasma Ins Conc, Run 30 - Glucose appearance.Plasma Glu Conc, Run 30 - Insulin secretion.Plasma Ins Conc, Run 31 - Glucose appearance.Plasma Glu Conc, Run 31 - Insulin secretion.Plasma Ins Conc, Run 32 - Glucose appearance.Plasma Glu Conc, Run 32 - Insulin secretion.Plasma Ins Conc, Run 33 - Glucose appearance.Plasma Glu Conc, Run 33 - Insulin secretion.Plasma Ins Conc, Run 34 - Glucose appearance.Plasma Glu Conc, Run 34 - Insulin secretion.Plasma Ins Conc, Run 35 - Glucose appearance.Plasma Glu Conc, Run 35 - Insulin secretion.Plasma Ins Conc, Run 36 - Glucose appearance.Plasma Glu Conc, Run 36 - Insulin secretion.Plasma Ins Conc, Run 37 - Glucose appearance.Plasma Glu Conc, Run 37 - Insulin secretion.Plasma Ins Conc, Run 38 - Glucose appearance.Plasma Glu Conc, Run 38 - Insulin secretion.Plasma Ins Conc, Run 39 - Glucose appearance.Plasma Glu Conc, Run 39 - Insulin secretion.Plasma Ins Conc, Run 40 - Glucose appearance.Plasma Glu Conc, Run 40 - Insulin secretion.Plasma Ins Conc, Run 41 - Glucose appearance.Plasma Glu Conc, Run 41 - Insulin secretion.Plasma Ins Conc, Run 42 - Glucose appearance.Plasma Glu Conc, Run 42 - Insulin secretion.Plasma Ins Conc, Run 43 - Glucose appearance.Plasma Glu Conc, Run 43 - Insulin secretion.Plasma Ins Conc, Run 44 - Glucose appearance.Plasma Glu Conc, Run 44 - Insulin secretion.Plasma Ins Conc, Run 45 - Glucose appearance.Plasma Glu Conc, Run 45 - Insulin secretion.Plasma Ins Conc, Run 46 - Glucose appearance.Plasma Glu Conc, Run 46 - Insulin secretion.Plasma Ins Conc, Run 47 - Glucose appearance.Plasma Glu Conc, Run 47 - Insulin secretion.Plasma Ins Conc, Run 48 - Glucose appearance.Plasma Glu Conc, Run 48 - Insulin secretion.Plasma Ins Conc, Run 49 - Glucose appearance.Plasma Glu Conc, Run 49 - Insulin secretion.Plasma Ins Conc, Run 50 - Glucose appearance.Plasma Glu Conc, Run 50 - Insulin secretion.Plasma Ins Conc.

Восстановите предупреждение настроек.

warning(warnSettings);

Входные параметры

свернуть все

Сценарии симуляции в виде SimBiology.Scenarios объект.

Модель SimBiology в виде a Model объект.

Выходные аргументы

свернуть все

Сценарии симуляции, возвращенные как Scenarios объект.

Введенный в R2019b