Слой встраивания Word для нейронных сетей для глубокого обучения
Слой встраивания слова сопоставляет словари с векторами.
Используйте слой встраивания слова в сети долгой краткосрочной памяти (LSTM) глубокого обучения. Сеть LSTM является типом рекуррентной нейронной сети (RNN), которая может изучить долгосрочные зависимости между временными шагами данных о последовательности. Слой встраивания слова сопоставляет последовательность словарей к встраиванию векторов и изучает встраивание слова во время обучения.
Этот слой требует Deep Learning Toolbox™.
создает слой встраивания слова и задает размерность встраивания и размер словаря.layer
= wordEmbeddingLayer(dimension
,numWords
)
[1] Glorot, Ксавьер и Иосуа Бенхио. "Изучая Трудность Учебных Глубоких Нейронных сетей Прямого распространения". В Продолжениях Тринадцатой Международной конференции по вопросам Искусственного интеллекта и Статистики, 249–356. Сардиния, Италия: AISTATS, 2010.
[2] Он, Kaiming, Сянюй Чжан, Шаоцин Жэнь и Цзянь Сунь. "Копаясь Глубоко в Выпрямителях: Превышение Эффективности Человеческого Уровня на Классификации ImageNet". В Продолжениях 2 015 Международных конференций IEEE по вопросам Компьютерного зрения, 1026–1034. Вашингтон, округ Колумбия: Общество Компьютерного зрения IEEE, 2015.
[3] Saxe, Эндрю М., Джеймс Л. Макклеллэнд и Сурья Гэнгули. "Точные решения нелинейной динамики изучения в глубоких линейных нейронных сетях". arXiv предварительно распечатывают arXiv:1312.6120 (2013).
trainNetwork
(Deep Learning Toolbox) | doc2sequence
| trainWordEmbedding
| wordEncoding
| lstmLayer
(Deep Learning Toolbox) | sequenceInputLayer
(Deep Learning Toolbox) | fastTextWordEmbedding
| tokenizedDocument
| word2vec