Исследуйте пример готовых узлов электромобиля топливного элемента

Чтобы спроектировать энергетическую систему для основанного на водороде транспортного средства, используйте проект примера готовых узлов топливного элемента с высокочастотной моделью топливного элемента в Simscape™. Можно переключиться между подробным и сопоставленным топливным элементом. Используйте эти модели для сравнительного анализа проекта и калибровки компонента, управляйте оптимизацией параметров управления и оборудованием в цикле (HIL) тестирование. Чтобы создать и открыть рабочую копию проекта примера готовых узлов, войти

В рамках этого проекта можно использовать Model-Based Calibration Toolbox™, чтобы создать сопоставленную модель топливного элемента из измеренных данных о производительности топливного элемента, сохраненных в электронной таблице. Для получения дополнительной информации смотрите, Генерируют Сопоставленный Топливный элемент из электронной таблицы.

Эта таблица описывает блоки и подсистемы в примере готовых узлов, указывая, какие подсистемы содержат варианты. Чтобы реализовать варианты модели, пример готовых узлов использует различные подсистемы.

Элемент примера готовых узловОписаниеВарианты

Блок Drive Cycle Source — FTP75 (2 474 секунды)

Генерирует стандартную или заданную пользователями скорость ездового цикла по сравнению с профилем времени. Блок выход является выбранным или заданным транспортным средством продольная скорость.

Environment подсистема

Создает переменные окружения, включая дорожный класс, скорость ветра, и атмосферную температуру и давление.

 
Longitudinal Driver подсистема

Использует вариант Longitudinal Driver или Open Loop, чтобы сгенерировать нормированное ускорение и тормозящие команды.

  • Вариант Longitudinal Driver реализует модель драйвера, которая использует цель транспортного средства и ссылочные скорости.

  • Вариант Open Loop позволяет вам конфигурировать ускорение, замедление, механизм и команды муфты с постоянными или основанными на сигнале входными параметрами.

Controllers подсистема

Реализует управляющий модуль трансмиссии (PCM) с регенеративным торможением, арбитражем крутящего момента двигателя и управлением электропитанием.

Passenger Car подсистема

Реализует легковой автомобиль, который содержит электрический объект и подсистемы ходовой части.

Visualization подсистема

Эффективность уровня транспортного средства отображений, состояние заряда (SOC) батареи и эквивалентные результаты экономии топлива, которые полезны для соответствия трансмиссии и анализа выбора компонента.

 

Источник ездового цикла

Drive Cycle Source блок генерирует целевую скорость транспортного средства для выбранного или заданного ездового цикла. Пример готовых узлов имеет эти опции.

СинхронизацияВариантОписание

Выведите шаг расчета

Continuous (значение по умолчанию)

Непрерывные команды оператора

Discrete

Дискретные команды оператора

Продольный драйвер

Longitudinal Driver подсистема генерирует нормированное ускорение и тормозящие команды. Пример готовых узлов имеет эти варианты.

Блокируйте варианты

Описание

Продольный драйвер (значение по умолчанию)

Управление

Mapped

Управление PI с отслеживанием завершения и усилений прямого распространения, которые являются функцией скорости транспортного средства.

Predictive

Оптимальный предварительный просмотр одно точки (предусматривает) управление.

Scalar (значение по умолчанию)

Управление пропорциональным интегралом (PI) с отслеживанием завершения и усилений прямого распространения.

Фильтр lowpass (LPF)

LPF

Используйте LPF при целевой ошибке скорости для более сглаженного управления.

pass

Не используйте фильтр при ошибке скорости.

Сдвиг

Basic

Stateflow® стройте диаграмму моделей, противоположных, нейтральных, и управляйте планированием переключения передач.

External

Введите механизм, состояние транспортного средства, и скоростная обратная связь генерирует ускорение и тормозящие команды, чтобы отследить вперед и инвертировать движение транспортного средства.

None (значение по умолчанию)

Никакая передача.

Scheduled

Модели диаграммы Stateflow, противоположные, нейтральные, парк и планирование переключения передач N-скорости.

Разомкнутый контур

Подсистема регулирования без обратной связи. В подсистеме можно сконфигурировать ускорение, замедление, механизм, и сжать команды с постоянными или основанными на сигнале входными параметрами.

Контроллеры

Чтобы определить крутящий момент двигателя и команды тормозного давления, пример готовых узлов реализует контрольный контроллер. А именно, подсистема контроллера включает управляющий модуль трансмиссии (PCM) с:

  • Регенеративное управление торможением

  • Арбитраж крутящего момента двигателя и управление электропитанием

    • Преобразует сигнал педали акселератора драйвера в запрос крутящего момента.

    • Преобразует сигнал педали тормоза драйвера в запрос тормозного давления. Алгоритм умножает сигнал педали тормоза на максимальное тормозное давление.

    • Реализует регенеративный алгоритм торможения для тягового мотора, чтобы восстановить максимальную сумму кинетической энергии от транспортного средства.

    • Реализует виртуальную систему управления батареи. Алгоритм выводит динамический выброс и пределы степени заряда как функции состояния заряда (SOC) батареи.

    • Реализует алгоритм управления электропитанием, который гарантирует батарею, динамический выброс и пределы степени заряда не превышены.

Regen, Тормозящий Управление, имеет эти варианты.

КонтроллерВариантОписание

Regen, тормозящий управление

Series Regen Brake (значение по умолчанию)

Торможение трения обеспечивает крутящий момент, не предоставленный регенеративным моторным торможением.

Parallel Regen Braking

Торможение трения и регенеративное моторное торможение независимо обеспечивают крутящий момент.

Легковой автомобиль

Реализовывать легковой автомобиль, Passenger Car подсистема содержит ходовую часть и электрическую подсистему объекта. Пример готовых узлов имеет эти варианты.

Ходовая часть

Подсистема ходовой частиВариантОписание

Дифференциал и податливость

All Wheel Drive

Сконфигурируйте ходовую часть для всего колеса, переднего колеса или заднего привода. Для полноприводного варианта можно сконфигурировать тип связывающегося крутящего момента.

Front Wheel Drive (значение по умолчанию)
Rear Wheel Drive

Транспортное средство

Vehicle Body 3 DOF Longitudinal

Сконфигурированный для 3 степеней свободы

Колеса и тормоза

Longitudinal Wheel - Front 1

Для колес можно сконфигурировать тип:

  • Тормоз

  • Обеспечьте вычисление

  • Вычисление сопротивления

  • Вертикальное движение

Для эффективности и ясности, чтобы определить продольную силу каждого колеса, варианты реализуют блок Longitudinal Wheel. Чтобы определить общую продольную силу всех колес, действующих на ось, варианты используют масштабный коэффициент, чтобы умножить силу одного колеса количеством колес на оси. При помощи этого подхода, чтобы вычислить общую силу, варианты принимают равный промах шины и загружающий в передних и задних осях, который характерен для продольных исследований трансмиссии. Если дело обстоит не так, например, когда трение или загрузки расходятся в левых и правых сторонах осей, уникальные Продольные блоки Колеса использования, чтобы вычислить независимые силы. Однако использование уникальных блоков, чтобы смоделировать каждое колесо увеличивает сложность модели и вычислительную стоимость.

Longitudinal Wheel - Rear 1

Электрический объект

Электрическая подсистема объектаВариантОписание
Батарея

BattEv (значение по умолчанию)

Сконфигурированный с аккумуляторной батареей

Двигатель

MotGenEvMapped (значение по умолчанию)

Сопоставленный двигатель с неявным контроллером

MotGenEvDynamic

Внутренний постоянный магнит синхронный двигатель (PMSM) с контроллером

Смотрите также

| | | | |

Связанные примеры

Больше о