В этом примере показано, как к соединениям моделей систем LTI, от простого ряда и параллельных связей, чтобы объединить блок-схемы.
Control System Toolbox™ обеспечивает много функций, чтобы помочь вам создать сети моделей LTI. Они включают функции, чтобы выполнить
Ряд и параллельные связи (series и parallel)
Соединения обратной связи (feedback и lft)
Конкатенации ввода и вывода ([ , ], [ ; ], и append)
Общее создание блок-схемы (connect).
Эти функции могут обработать любую комбинацию представлений модели. В целях рисунка создайте следующие две модели передаточной функции SISO:
H1 = tf(2,[1 3 0])
H1 =
2
---------
s^2 + 3 s
Continuous-time transfer function.
H2 = zpk([],-5,5)
H2 =
5
-----
(s+5)
Continuous-time zero/pole/gain model.

Используйте * оператор или series функционируйте, чтобы соединить модели LTI последовательно, например:
H = H2 * H1
H =
10
-------------
s (s+5) (s+3)
Continuous-time zero/pole/gain model.
или эквивалентно
H = series(H1,H2);

Используйте + оператор или parallel функционируйте, чтобы соединить модели LTI параллельно, например:
H = H1 + H2
H =
5 (s+2.643) (s+0.7566)
----------------------
s (s+3) (s+5)
Continuous-time zero/pole/gain model.
или эквивалентно
H = parallel(H1,H2);
Стандартную настройку обратной связи показывают ниже:

Создавать модель передачи с обратной связью от u к yВвод
H = feedback(H1,H2)
H =
2 (s+5)
--------------------------------
(s+5.663) (s^2 + 2.337s + 1.766)
Continuous-time zero/pole/gain model.
Обратите внимание на то, что feedback принимает отрицательную обратную связь по умолчанию. Чтобы применить положительную обратную связь, используйте следующий синтаксис:
H = feedback(H1,H2,+1);
Можно также использовать lft функционируйте, чтобы создать более общее соединение обратной связи, коротко изложенное ниже.

Можно конкатенировать входные параметры этих двух моделей H1 и H2 путем ввода
H = [ H1 , H2 ]
H =
From input 1 to output:
2
-------
s (s+3)
From input 2 to output:
5
-----
(s+5)
Continuous-time zero/pole/gain model.
Получившаяся модель имеет два входных параметров и соответствует соединению:

Точно так же можно конкатенировать выходные параметры H1 и H2 путем ввода
H = [ H1 ; H2 ]
H =
From input to output...
2
1: -------
s (s+3)
5
2: -----
(s+5)
Continuous-time zero/pole/gain model.
Получившаяся модель H имеет два выходных параметров и один вход и соответствует следующей блок-схеме:

Наконец, можно добавить вводы и выводы двух использований моделей:
H = append(H1,H2)
H =
From input 1 to output...
2
1: -------
s (s+3)
2: 0
From input 2 to output...
1: 0
5
2: -----
(s+5)
Continuous-time zero/pole/gain model.
Получившаяся модель H имеет два входных параметров и два выходных параметров и соответствует блок-схеме:

Можно использовать конкатенацию, чтобы создать модели MIMO из элементарных моделей SISO, например:
H = [H1 , -tf(10,[1 10]) ; 0 , H2 ]
H =
From input 1 to output...
2
1: -------
s (s+3)
2: 0
From input 2 to output...
-10
1: ------
(s+10)
5
2: -----
(s+5)
Continuous-time zero/pole/gain model.
sigma(H), grid

Можно использовать комбинации функций и операций, введенных до сих пор, чтобы создать модели простых блок-схем. Например, рассмотрите следующую блок-схему:

со следующими данными для блоков FCGS:
s = tf('s');
F = 1/(s+1);
G = 100/(s^2+5*s+100);
C = 20*(s^2+s+60)/s/(s^2+40*s+400);
S = 10/(s+10);Можно вычислить передачу с обратной связью T от r к y как
T = F * feedback(G*C,S); step(T), grid

Для более сложных блок-схем, connect функция обеспечивает систематический и простой способ соединить блоки вместе. Использовать connect, выполните эти шаги:
Задайте все блоки в схеме, включая блоки суммирования
Назовите все графики входного и выходного каналов блока
Выберите блок-схему I/Os из списка блока I/Os.

Для блок-схемы выше, эти шаги составляют:
Sum1 = sumblk('e = r - y'); Sum2 = sumblk('u = uC + uF'); % Define block I/Os ("u" and "y" are shorthand for "InputName" and "OutputName") F.u = 'r'; F.y = 'uF'; C.u = 'e'; C.y = 'uC'; G.u = 'u'; G.y = 'ym'; S.u = 'ym'; S.y = 'y'; % Compute transfer r -> ym T = connect(F,C,G,S,Sum1,Sum2,'r','ym'); step(T), grid

При соединении моделей различных типов получившийся тип модели определяется правилом приоритета
FRD > SS > ZPK > TF > PID
Это говорит, что FRD имеет наивысший приоритет, сопровождаемый SS, ZPK, TF, и ПИД имеет самый низкий приоритет. Например, в последовательной связи:
H1 = ss(-1,2,3,0); H2 = tf(1,[1 0]); H = H2 * H1;
H2 автоматически преобразован в представление пространства состояний и результат H модель в пространстве состояний:
class(H)
ans = 'ss'
Поскольку SS и представления FRD подходят лучше всего для системных соединений, рекомендуется, чтобы вы преобразовали по крайней мере одну из моделей к SS или FRD, чтобы гарантировать, что все расчеты выполняются с помощью одного из этих двух представлений. Одно исключение при использовании connect который автоматически выполняет такое преобразование и всегда возвращает пространство состояний или модель FRD блок-схемы.