Сглаженные состояния модели в пространстве состояний, содержащей компонент регрессии

В этом примере показано, как сглаживать состояния независимого от времени, модель в пространстве состояний, которая содержит компонент регрессии.

Предположим, что линейное соотношение между изменением в уровне безработицы и темпом роста номинального валового национального продукта (nGNP) представляет интерес. Предположим далее, что первым различием уровня безработицы является серия ARMA(1,1). Символически, и в форме пространства состояний, модель

[x1,tx2,t]=[ϕθ00][x1,t-1x2,t-1]+[11]u1,tyt-βZt=x1,t+σεt,

где:

  • x1,t изменение в уровне безработицы во время t.

  • x2,t фиктивное состояние для MA (1) эффект.

  • y1,t наблюдаемое изменение в уровне безработицы, выкачиваемом темпом роста nGNP (Zt).

  • u1,t серия Gaussian воздействий состояния, имеющих среднее значение 0 и стандартное отклонение 1.

  • εt серия Gaussian инноваций наблюдения, имеющих среднее значение 0 и стандартное отклонение σ.

Загрузите набор данных Нельсона-Плоссера, который содержит уровень безработицы и nGNP ряд, среди прочего.

load Data_NelsonPlosser

Предварительно обработайте данные путем взятия натурального логарифма nGNP ряда и первого различия каждого ряда. Кроме того, удалите стартовый NaN значения от каждого ряда.

isNaN = any(ismissing(DataTable),2);       % Flag periods containing NaNs
gnpn = DataTable.GNPN(~isNaN);
u = DataTable.UR(~isNaN);
T = size(gnpn,1);                          % Sample size
Z = [ones(T-1,1) diff(log(gnpn))];
y = diff(u);

Хотя этот пример удаляет отсутствующие значения, программное обеспечение может вместить ряд, содержащий отсутствующие значения в среде Фильтра Калмана.

Задайте содействующие матрицы.

A = [NaN NaN; 0 0];
B = [1; 1];
C = [1 0];
D = NaN;

Задайте модель в пространстве состояний с помощью ssm.

Mdl = ssm(A,B,C,D);

Оцените параметры модели. Задайте компонент регрессии и его начальное значение для оптимизации с помощью 'Predictors' и 'Beta0' аргументы пары "имя-значение", соответственно. Ограничьте оценку σ ко всем положительным, вещественным числам.

params0 = [0.2 0.2 0.1];
[EstMdl,estParams] = estimate(Mdl,y,params0,'Predictors',Z,...
    'Beta0',[0.2 0.1],'lb',[-Inf,-Inf,0,-Inf,-Inf]);
Method: Maximum likelihood (fmincon)
Sample size: 61
Logarithmic  likelihood:     -99.7245
Akaike   info criterion:      209.449
Bayesian info criterion:      220.003
           |      Coeff       Std Err    t Stat     Prob  
----------------------------------------------------------
 c(1)      |  -0.34098       0.29608    -1.15164  0.24948 
 c(2)      |   1.05003       0.41377     2.53771  0.01116 
 c(3)      |   0.48592       0.36790     1.32079  0.18658 
 y <- z(1) |   1.36121       0.22338     6.09358   0      
 y <- z(2) | -24.46711       1.60018   -15.29024   0      
           |                                              
           |    Final State   Std Dev     t Stat    Prob  
 x(1)      |   1.01264       0.44690     2.26592  0.02346 
 x(2)      |   0.77718       0.58917     1.31912  0.18713 

EstMdl ssm модель, и можно получить доступ к ее свойствам с помощью записи через точку.

Сглаживайте состояния. EstMdl не хранит данные или коэффициенты регрессии, таким образом, необходимо передать в них в использовании аргументов пары "имя-значение" 'Predictors' и 'Beta', соответственно. Постройте сглаживавшие состояния. Вспомните, что первое состояние является изменением в уровне безработицы, и второе состояние помогает создать первое.

SmoothedX = smooth(EstMdl,y,'Predictors',Z,'Beta',estParams(end-1:end));

figure
plot(dates(end-(T-1)+1:end),SmoothedX(:,1));
xlabel('Period')
ylabel('Change in the unemployment rate')
title('Smoothed Change in the Unemployment Rate')

Figure contains an axes object. The axes object with title Smoothed Change in the Unemployment Rate contains an object of type line.

Смотрите также

| | |

Похожие темы

Для просмотра документации необходимо авторизоваться на сайте