Вычислите ошибку квантования

В этом примере показано, как вычислить и сравнить статистику ошибки квантования сигнала при использовании различных методов округления.

Во-первых, случайный сигнал создается, который порождает линейную оболочку столбцов квантизатора.

Затем сигнал квантуется, соответственно, с округлением методов 'фиксируют', 'ставят в тупик', 'перекрывают', 'самый близкий', и 'конвергентный', и статистические данные сигнала оцениваются.

Теоретическая функция плотности вероятности ошибки квантования будет вычислена с ERRPDF, теоретическое среднее значение ошибки квантования будет вычислено с ERRMEAN, и теоретическое отклонение ошибки квантования будет вычислено с ERRVAR.

Равномерно распределенный случайный сигнал

Сначала мы создаем равномерно распределенный случайный сигнал, который охватывает область-1 к 1 из квантизаторов фиксированной точки, на которые мы посмотрим.

q = quantizer([8 7]);
r = realmax(q);
u = r*(2*rand(50000,1) - 1);        % Uniformly distributed (-1,1)
xi=linspace(-2*eps(q),2*eps(q),256);

Исправление: вокруг по направлению к нулю.

Заметьте, что с округлением 'фиксации', функция плотности вероятности вдвое более широка, чем другие. Поэтому отклонение в четыре раза больше чем это других.

q = quantizer('fix',[8 7]);
err = quantize(q,u) - u;
f_t = errpdf(q,xi);
mu_t = errmean(q);
v_t  = errvar(q);
% Theoretical variance = eps(q)^2 / 3
% Theoretical mean     = 0
fidemo.qerrordemoplot(q,f_t,xi,mu_t,v_t,err)
Estimated   error variance (dB) = -46.8586
Theoretical error variance (dB) = -46.9154
Estimated   mean = 7.788e-06
Theoretical mean = 0

Пол: вокруг к минус бесконечность.

Пол, округляющийся, часто называется усечением, когда используется с целыми числами и числами фиксированной точки, которые представлены в дополнении two. Это - наиболее распространенный режим округления процессоров DSP, потому что это требует, чтобы никакое оборудование не реализовало. Пол не производит квантованные значения, которые являются как близко к истинным значениям, когда ROUND будет, но это имеет то же отклонение, и маленькие сигналы, которые варьируются по знаку, будут обнаружены, тогда как в ROUND они будут потеряны.

q = quantizer('floor',[8 7]);
err = quantize(q,u) - u;
f_t = errpdf(q,xi);
mu_t = errmean(q);
v_t  = errvar(q);
% Theoretical variance =  eps(q)^2 / 12
% Theoretical mean     = -eps(q)/2
fidemo.qerrordemoplot(q,f_t,xi,mu_t,v_t,err)
Estimated   error variance (dB) = -52.9148
Theoretical error variance (dB) = -52.936
Estimated   mean = -0.0038956
Theoretical mean = -0.0039062

Потолок: вокруг к плюс бесконечность.

q = quantizer('ceil',[8 7]);
err = quantize(q,u) - u;
f_t = errpdf(q,xi);
mu_t = errmean(q);
v_t  = errvar(q);
% Theoretical variance = eps(q)^2 / 12
% Theoretical mean     = eps(q)/2
fidemo.qerrordemoplot(q,f_t,xi,mu_t,v_t,err)
Estimated   error variance (dB) = -52.9148
Theoretical error variance (dB) = -52.936
Estimated   mean = 0.0039169
Theoretical mean = 0.0039062

Вокруг: вокруг к самому близкому. Вничью, вокруг к самой большой величине.

Вокруг более точно, чем пол, но все значения, меньшие, чем eps (q), округлены, чтобы обнулить и потеряны - также.

q = quantizer('nearest',[8 7]);
err = quantize(q,u) - u;
f_t = errpdf(q,xi);
mu_t = errmean(q);
v_t  = errvar(q);
% Theoretical variance = eps(q)^2 / 12
% Theoretical mean     = 0
fidemo.qerrordemoplot(q,f_t,xi,mu_t,v_t,err)
Estimated   error variance (dB) = -52.9579
Theoretical error variance (dB) = -52.936
Estimated   mean = -2.212e-06
Theoretical mean = 0

Конвергентный: вокруг к самому близкому. Вничью, вокруг к даже.

Конвергентное округление устраняет смещение, введенное обычным "раундом", вызванным, всегда округляя связь в том же направлении.

q = quantizer('convergent',[8 7]);
err = quantize(q,u) - u;
f_t = errpdf(q,xi);
mu_t = errmean(q);
v_t  = errvar(q);
% Theoretical variance = eps(q)^2 / 12
% Theoretical mean     = 0
fidemo.qerrordemoplot(q,f_t,xi,mu_t,v_t,err)
Estimated   error variance (dB) = -52.9579
Theoretical error variance (dB) = -52.936
Estimated   mean = -2.212e-06
Theoretical mean = 0

Сравнение самых близких по сравнению с конвергентным

Функция плотности вероятности появления ошибки для конвергентного округления затрудняет, чтобы различать от того из раунда-к-самому-близкому путем рассмотрения графика.

Ошибка p.d.f. из конвергентных

f(err) = 1/eps(q),  for -eps(q)/2 <= err <= eps(q)/2, and 0 otherwise

в то время как ошибка p.d.f. из раунда

f(err) = 1/eps(q),  for -eps(q)/2 <  err <= eps(q)/2, and 0 otherwise

Обратите внимание на то, что ошибка p.d.f. из конвергентных симметрично, в то время как вокруг немного склоняется к положительному.

Единственной разницей является направление округления вничью.

x=(-3.5:3.5)';
[x convergent(x) nearest(x)]
ans =

   -3.5000   -4.0000   -3.0000
   -2.5000   -2.0000   -2.0000
   -1.5000   -2.0000   -1.0000
   -0.5000         0         0
    0.5000         0    1.0000
    1.5000    2.0000    2.0000
    2.5000    2.0000    3.0000
    3.5000    4.0000    4.0000

Постройте функцию помощника

Функция помощника, которая использовалась, чтобы сгенерировать графики в этом примере, описана ниже.

type(fullfile(matlabroot,'toolbox','fixedpoint','fidemos','+fidemo','qerrordemoplot.m'))
%#ok<*NOPTS>
function qerrordemoplot(q,f_t,xi,mu_t,v_t,err)
%QERRORDEMOPLOT  Plot function for QERRORDEMO.
%    QERRORDEMOPLOT(Q,F_T,XI,MU_T,V_T,ERR) produces the plot and display
%    used by the example function QERRORDEMO, where Q is the quantizer
%    whose attributes are being analyzed; F_T is the theoretical
%    quantization error probability density function for quantizer Q
%    computed by ERRPDF; XI is the domain of values being evaluated by
%    ERRPDF; MU_T is the theoretical quantization error mean of quantizer Q
%    computed by ERRMEAN; V_T is the theoretical quantization error
%    variance of quantizer Q computed by ERRVAR; and ERR is the error
%    generated by quantizing a random signal by quantizer Q.
%
%    See QERRORDEMO for examples of use.

%    Copyright 1999-2014 The MathWorks, Inc.

v=10*log10(var(err));
disp(['Estimated   error variance (dB) = ',num2str(v)]);
disp(['Theoretical error variance (dB) = ',num2str(10*log10(v_t))]);
disp(['Estimated   mean = ',num2str(mean(err))]);
disp(['Theoretical mean = ',num2str(mu_t)]);
[n,c]=hist(err);
figure(gcf)
bar(c,n/(length(err)*(c(2)-c(1))),'hist');
line(xi,f_t,'linewidth',2,'color','r');
% Set the ylim uniformly on all plots
set(gca,'ylim',[0 max(errpdf(quantizer(q.format,'nearest'),xi)*1.1)])
legend('Estimated','Theoretical')
xlabel('err'); ylabel('errpdf')