В этом примере показано, как разделить данные из patients.mat файл данных в группы. Затем это показывает, как вычислить средние веса и индексы массы тела и отклонения в показаниях кровяного давления, для групп пациентов. Это также показывает, как обобщить результаты в таблице.
Загрузите выборочные данные, собранные от 100 пациентов.
load patientsПреобразуйте Gender и SelfAssessedHealthStatus к категориальным массивам.
Gender = categorical(Gender); SelfAssessedHealthStatus = categorical(SelfAssessedHealthStatus); whos
Name Size Bytes Class Attributes Age 100x1 800 double Diastolic 100x1 800 double Gender 100x1 330 categorical Height 100x1 800 double LastName 100x1 11616 cell Location 100x1 14208 cell SelfAssessedHealthStatus 100x1 560 categorical Smoker 100x1 100 logical Systolic 100x1 800 double Weight 100x1 800 double
Разделите пациентов в некурящих и курильщиков, использующих Smoker переменная. Вычислите средний вес для каждой группы.
[G,smoker] = findgroups(Smoker); meanWeight = splitapply(@mean,Weight,G)
meanWeight = 2×1
149.9091
161.9412
findgroups функция возвращает G, вектор из чисел группы создается из Smoker. splitapply функционируйте использует G разделять Weight в две группы. splitapply применяет mean функционируйте каждой группе, и конкатенирует средние веса в вектор.
findgroups возвращает вектор из идентификаторов группы как второй выходной аргумент. Идентификаторы группы являются логическими значениями потому что Smoker содержит логические значения. Пациенты в первой группе являются некурящими, и пациенты во второй группе являются курильщиками.
smoker
smoker = 2x1 logical array
0
1
Разделите веса пациентов по полу и статусу курильщика и вычислите средние веса.
G = findgroups(Gender,Smoker); meanWeight = splitapply(@mean,Weight,G)
meanWeight = 4×1
130.3250
130.9231
180.0385
181.1429
Уникальные комбинации через Gender и Smoker идентифицируйте четыре группы пациентов: женщины - некурящие, курильщицы, штекерные некурящие и штекерные курильщики. Объедините эти четыре группы и их средние веса в таблице.
[G,gender,smoker] = findgroups(Gender,Smoker); T = table(gender,smoker,meanWeight)
T=4×3 table
gender smoker meanWeight
______ ______ __________
Female false 130.32
Female true 130.92
Male false 180.04
Male true 181.14
T.gender содержит категориальные значения и T.smoker содержит логические значения. Типы данных этих табличных переменных совпадают с типами данных Gender и Smoker соответственно.
Вычислите индекс массы тела (BMI) для четырех групп пациентов. Задайте функцию, которая берет Height и Weight как его два входных параметра, и это вычисляет BMI.
meanBMIfcn = @(h,w)mean((w ./ (h.^2)) * 703); BMI = splitapply(meanBMIfcn,Height,Weight,G)
BMI = 4×1
21.6721
21.6686
26.5775
26.4584
Вычислите часть пациентов, которые сообщают об их здоровье как о любом Poor или Fair. Во-первых, используйте splitapply считать количество пациентов в каждой группе: женщины - некурящие, курильщицы, штекерные некурящие и штекерные курильщики. Затем количество только те пациенты, которые сообщают об их здоровье как о любом Poor или Fair, использование логической индексации на S и G. От этих двух наборов количеств вычислите часть для каждой группы.
[G,gender,smoker] = findgroups(Gender,Smoker);
S = SelfAssessedHealthStatus;
I = ismember(S,{'Poor','Fair'});
numPatients = splitapply(@numel,S,G);
numPF = splitapply(@numel,S(I),G(I));
numPF./numPatientsans = 4×1
0.2500
0.3846
0.3077
0.1429
Сравните стандартное отклонение в Diastolic показания тех пациентов, которые сообщают о Poor или Fair здоровье и те пациенты, которые сообщают о Good или Excellent здоровье.
stdDiastolicPF = splitapply(@std,Diastolic(I),G(I)); stdDiastolicGE = splitapply(@std,Diastolic(~I),G(~I));
Соберите результаты в таблице. Для этих пациентов, женщин - некурящих, которые сообщают о Poor или Fair здоровье показывает самое широкое изменение показаний кровяного давления.
T = table(gender,smoker,numPatients,numPF,stdDiastolicPF,stdDiastolicGE,BMI)
T=4×7 table
gender smoker numPatients numPF stdDiastolicPF stdDiastolicGE BMI
______ ______ ___________ _____ ______________ ______________ ______
Female false 40 10 6.8872 3.9012 21.672
Female true 13 5 5.4129 5.0409 21.669
Male false 26 8 4.2678 4.8159 26.578
Male true 21 3 5.6862 5.258 26.458