Численно оцените двойной интеграл
integral2 функционируйте пытается удовлетворить:
abs(q - Q) <= max(AbsTol,RelTol*abs(q))
q вычисленное значение интеграла и Q (неизвестное) точное значение. Абсолютные и относительные погрешности обеспечивают способ обменять точность и время вычисления. Обычно, относительная погрешность определяет точность интегрирования. Однако, если abs(q) достаточно мал, абсолютная погрешность определяет точность интегрирования. Необходимо обычно задавать и абсолютные и относительные погрешности вместе. 'iterated' метод может быть более эффективным, когда ваша функция имеет разрывы в области интегрирования. Однако лучшая эффективность и точность происходят, когда вы разделяете интеграл в точках разрыва и суммируете результаты нескольких интегрирований.
Когда интеграция по непрямоугольным областям, лучшей эффективности и точности происходит когда yminymax , (или оба), указатели на функцию. Постарайтесь не устанавливать значения функции подынтегрального выражения обнулять, чтобы объединяться по непрямоугольной области. Если необходимо сделать это, задайте 'iterated' метод.
Используйте 'iterated' метод, когда yminymax , (или оба), неограниченные функции.
При параметризации анонимных функций, иметь в виду, что значения параметров сохраняются для жизни указателя на функцию. Например, функциональный fun = @(x,y) x + y + a использует значение a в то время fun был создан. Если вы позже решаете изменить значение a, необходимо переопределить анонимную функцию с новым значением.
Если вы задаете пределы с одинарной точностью интегрирования, или если fun возвращает результаты с одинарной точностью, вы можете должны быть задать большие допуски абсолютной и относительной погрешности.
[1] Л.Ф. Шемпин “Векторизовал адаптивную квадратуру в MATLAB®,” Журнал Вычислительной и Прикладной математики, 211, 2008, pp.131–140.
[2] Л.Ф. Шемпин, "Программа MATLAB для Квадратуры в 2D". Прикладная математика и Расчет. Издание 202, Выпуск 1, 2008, стр 266–274.