Обращение матриц
Редко необходимо сформировать явную инверсию матрицы. Частое неправильное употребление inv возникает при решении системы линейных уравнений Ax = b. Один способ решить уравнение с x = inv(A)*b. Лучший путь, с точки зрения и времени выполнения и числовой точности, состоит в том, чтобы использовать матричный оператор обратной косой черты x = A\b. Это производит решение с помощью Исключения Гаусса, явным образом не формируя инверсию. Смотрите mldivide для получения дополнительной информации.
inv выполняет LU-разложение входной матрицы (или разложение LDL, если входная матрица является Эрмитовой). Это затем использует результаты сформировать линейную систему, решение которой является обратной матрицей inv(X). Для разреженных входных параметров, inv(X) создает разреженную единичную матрицу и использует обратную косую черту, X\speye(size(X)).