Клапан для маршрутизации потока на перекрестке трех линий
Simscape / Жидкости / Тепловая Жидкость / Valves & Orifices / Направленные Распределительные клапаны
Блок 3-Way Directional Valve моделирует поток через направленный распределительный клапан с тремя портами (P, T и A) и два пути к потоку (линии P-A и A-T). Порты соединяются с тем, что в типичной системе является насосом (P), бак (T) и привод одностороннего действия (A). Пути каждый содержит отверстие переменного сечения, которое открывается пропорционально смещению поршня управления — часто мяч, золотник или диафрагма, сопоставленная с сигналом в порте S. Этот клапан служит переключателем, которым можно разделить поток между ветвями трехаспектного соединения.
Типичный Setup клапана
Клапан с плавкой регулировкой, который должен сказать, что переключает гладко между положениями. Из них существуют три: одно нормальное и две работы. Нормальное положение то, что, к которому возвращается клапан, когда поршень управления больше не приводится в движение. Отверстия оба обычно закрываются в этом положении. Рабочие положения - те, в которых перемещается клапан, когда поршень управления максимально приводится в движение. Одно отверстие обычно закрывается в этом положении, в то время как другой полностью открыто. Точные вводные состояния отверстий зависят от перемещений открытия, заданных в диалоговом окне блока.
Рабочие положения показаны на рисунке в случае по умолчанию клапана без перемещений открытия. Один, пометил меня, соответствует A-T отверстие, являющееся максимально открытым и P-A отверстие, максимально закрытое. Другой, пометил II, соответствует противоположному расположению, с P-A отверстие, являющееся максимально открытым и A-T отверстие, максимально закрытое. В точках между нормальными и рабочими положениями одно отверстие частично открыто, в то время как другой полностью закрывается. Обратите внимание на то, что никакое физическое соединение не существует между портами P и T и поэтому что никакой поток не может разработать через них.
То, которые располагают клапан, находится в, зависит от координат поршня управления относительно P-A и A-T отверстия — длины, упомянутые здесь как открытия отверстия. Они вычисляются в процессе моделирования от их перемещений открытия, каждый заданный как параметры блоков в диалоговом окне блока, и от перемещения органа управления, данного физическим сигналом в порте S. Для P-A отверстие:
где:
Усилителем мощности (УМ) h является P-A открытие отверстия.
h PA0 является P-A перемещение открытия.
x является перемещением органа управления. Перемещение органа управления нуля соответствует клапану, который находится в нормальном состоянии.
Для A-T отверстие:
где:
h AT является A-T открытие отверстия.
h AT0 является A-T перемещение открытия.
Трещины отверстия открываются, когда его расчетное вводное (переменная h) повышается выше нуля. Это затем продолжает расширять с повышением вводное значение. В случае P-A отверстие, это происходит, когда поршень управления перемещен в положительном направлении. В случае A-T отверстие, это происходит, когда поршень управления перемещен в обратном направлении.
Отверстия - каждый полностью открытый, когда вводное значение в заданном максимуме. В линейной параметризации клапана этот максимум получен из параметров блоков Maximum valve opening. Можно установить параметр Area characteristics на Different for each flow path
задавать параметр Maximum valve opening отдельно для каждого отверстия. В сведенной в таблицу параметризации клапана максимальное открытие получено из последней точки останова в табличных данных.
Клапан по умолчанию сконфигурирован так, чтобы он был полностью закрыт, когда перемещение органа управления является нулем. Такой клапан часто описывается как полируемый нулем. Это возможно, путем применения смещения к поршню управления, чтобы смоделировать клапан, который является underlapped (частично открытый, когда перемещение органа управления является нулем), или перекрытый (полностью закрытый до перемещения органа управления, равного прикладному смещению). Рисунок показывает открытие отверстия в зависимости от перемещения органа управления для каждого случая:
Случай I: клапан с нулевым перекрытием. Перемещения открытия равны нулю. Когда клапан находится в нормальном положении, поршень управления полностью покрывает оба отверстия. Клапан с нулевым перекрытием полностью закрывается, когда перемещение органа управления ниже нуля.
Случай II: клапан с отрицательным перекрытием. Перемещения открытия оба положительны. Когда клапан находится в нормальном положении, поршень управления покрывает оба отверстия, но ни одного полностью. Клапан с отрицательным перекрытием всегда, по крайней мере, частично открываются.
Случай III: клапан с положительным перекрытием. Перемещения открытия оба отрицательны. Поршень управления полностью покрывает оба отверстия не только в нормальном положении, но и по небольшой области вокруг этого. Клапан с положительным перекрытием полностью закрывается, пока поршень управления не пересекает перемещение открытия ни одного отверстия.
Открытия отверстия служат в процессе моделирования, чтобы вычислить массовые расходы жидкости через отверстия. Вычисление может быть прямым отображением от открытия до скорости потока жидкости или косвенного преобразования, сначала от открытия до площади постоянного отверстия и затем от площади постоянного отверстия до массового расхода жидкости. Вычисление и данные, требуемые для него, зависят от установки параметров блоков Valve parameterization:
Linear area-opening relationship
— Вычислите площадь открытия клапана от перемещения органа управления, и от него получают массовый расход жидкости через клапан. Площадь открытия принимается линейно зависимой с перемещением органа управления. Наклон линейной зависимости определяется из параметров блоков Maximum opening area и Maximum valve opening.
Tabulated data - Area vs. opening
— Вычислите площадь открытия клапана от перемещения органа управления, и от него получают массовый расход жидкости через клапан. Площадь открытия может варьироваться нелинейно с перемещением органа управления. Отношение между этими двумя дано табличными данными в параметрах блоков Opening area vector и Valve opening vector.
Tabulated data - Mass flow rate vs. opening and pressure drop
— Вычислите массовый расход жидкости непосредственно от перемещения органа управления и перепада давления на клапане. Отношение между этими тремя переменными может быть нелинейным, и оно дано табличными данными в Valve opening vector, Pressure drop vector и параметрах блоков Mass flow rate table.
Основная цель уровня утечек закрытого клапана не должна убеждаться ни в какое время, фрагмент тепловой жидкой сети становится изолированным от остатка от модели. Такие изолированные фрагменты уменьшают числовую робастность модели и могут замедлить симуляцию или заставить его перестать работать. Утечка обычно присутствует в реальных клапанах, но в модели ее точное значение менее важно, чем то, что это было небольшим числом, больше, чем нуль. Уровень утечек определяется из параметров блоков Leakage area.
Перепад давления при клапане вычисляется от эмпирического параметра, известного как коэффициент расхода (полученный из параметров блоков Discharge coefficient). Вычисление получает эффект режима течения с перепадом давления, являющимся пропорциональным массовому расходу жидкости, когда поток ламинарен и квадрату того же самого, когда поток турбулентен. Также полученный восстановление давления, которое в реальных клапанах находится между vena contracta (самая узкая апертура клапана) и выход, который обычно находится маленькое расстояние далеко.
Этот блок является составным компонентом, включающим два блока Variable Area Orifice (TL), соединенные как показано на рисунке. Один управляющий сигнал приводит в движение два блока одновременно. Параметры блоков Orifice orientation установлены так, чтобы положительный сигнал действовал, чтобы открыть одно отверстие при закрытии другого. Перемещения открытия применяются к соответствующим блокам. Обратитесь к блоку Variable Area Orifice (TL) для детали о вычислениях площади открытия.
Variable Area Orifice (TL) | 2-Way Directional Valve (TL) | 4-Way Directional Valve (TL) | Check Valve (TL)