SM AC3C

Дискретное время или непрерывное время синхронная машина система возбуждения AC3C включая автоматический регулятор напряжения и возбудитель

  • Библиотека:
  • Simscape / Электрический / Управление / Управление SM

  • SM AC3C block

Описание

Блок SM AC3C реализует синхронную системную модель возбуждения типа AC3C машины в соответствии с IEEE 421.5-2016[1].

Используйте этот блок, чтобы смоделировать управление и регулирование полевого напряжения синхронной машины, которая действует в качестве генератора с помощью возбудителя вращения AC.

Можно переключиться между непрерывными и дискретными реализациями блока при помощи параметра Sample time (-1 for inherited). Чтобы сконфигурировать интегратор в течение непрерывного времени, установите свойство Sample time (-1 for inherited) на 0. Чтобы сконфигурировать интегратор в течение дискретного времени, установите свойство Sample time (-1 for inherited) на положительное, ненулевое значение, или на -1 наследовать шаг расчета от восходящего блока.

Блок SM AC3C составлен из четырех главных компонентов:

  • Текущий Компенсатор изменяет измеренное терминальное напряжение в зависимости от терминального тока.

  • Преобразователь Измерения Напряжения симулирует динамику терминального преобразователя напряжения с помощью фильтра lowpass.

  • Компонент Элементов управления Возбуждения сравнивает преобразователь напряжения выход с терминальной ссылкой напряжения, чтобы произвести ошибку напряжения. Эта ошибка напряжения затем передается через регулятор напряжения, чтобы произвести полевое напряжение возбудителя.

  • Модели AC Rotating Exciter возбудитель вращения AC, который производит полевое напряжение, которое применяется к управляемой синхронной машине. Блок также питает поле возбудителя текущим (которому дают стандартный символ VFE), назад к системе возбуждения.

Эта схема показывает полную структуру системной модели возбуждения AC3C:

В схеме:

  • VT и IT являются измеренным терминальным напряжением и текущий из синхронной машины.

  • VC1 является компенсированным текущим образом терминальным напряжением.

  • VC является отфильтрованным, компенсированным текущим образом терминальным напряжением.

  • VREF является ссылочным терминальным напряжением.

  • VS является напряжением стабилизатора энергосистемы.

  • EFE и VFE являются полевым напряжением возбудителя и текущий, соответственно.

  • EFD и IFD являются полевым напряжением и текущий, соответственно.

Следующие разделы описывают каждую из больших частей блока подробно.

Текущий преобразователь измерения компенсатора и напряжения

Текущий компенсатор моделируется как:

VC1=VT+ITRC2+XC2,

где:

  • RC является сопротивлением компенсации загрузки.

  • XC является реактивным сопротивлением компенсации загрузки.

Преобразователь измерения напряжения реализован как блок Low-Pass Filter с постоянной времени TR. Обратитесь к документации для этого блока для дискретных и непрерывных реализаций.

Элементы управления возбуждения

Эта схема иллюстрирует полную структуру элементов управления возбуждения:

В схеме:

  • Подсистема Логики Точки Суммирования моделирует входное местоположение точки суммирования для ограничителя перевозбуждения (OEL), ограничителя недовозбуждения (UEL) и напряжений статора текущего ограничителя (SCL). Для получения дополнительной информации об использовании ограничителей с этим блоком смотрите Поле Текущие Ограничители.

  • Подсистема PID_R моделирует ПИД-регулятор, и она позволяет представление проектов модификации, где современный цифровой возбудитель добавляется к возбудителю. Возможно смоделировать системную модель возбуждения SM AC3A путем настройки параметров ПИДа.

  • Модели блока Lead-Lag дополнительная динамика сопоставлены с регулятором напряжения. Здесь, TC является постоянным временем выполнения заказа, и TB является постоянным временем задержки. Обратитесь к документации для блока Lead-Lag для дискретных и непрерывных реализаций.

  • Подсистема Логики Поглощения моделирует входное местоположение точки поглощения для OEL, UEL и напряжений SCL. Для получения дополнительной информации об использовании ограничителей с этим блоком смотрите Поле Текущие Ограничители.

  • Блок Low-Pass Filter моделирует главную динамику регулятора напряжения. Здесь, KA является усилением регулятора, и TA является главной постоянной времени регулятора. Минимальными и максимальными антизаключительными пределами насыщения для блока является VAmin и VAmax, соответственно.

  • Степень регулятора напряжения выведена из выходного напряжения возбудителя. Сигнал команды регулятора напряжения, VA, умножается на выходное напряжение возбудителя, EFD, и умножается на KR. Это добавляет уровень нелинейности к системе.

  • Блок Filtered Derivative моделирует путь к обратной связи уровня для стабилизации системы возбуждения. В этом случае стабилизатор имеет нелинейную характеристику. Если выходное напряжение возбудителя, EFD, меньше параметра Value of EFD at which feedback gain changes, E_FDN (pu), усилением обратной связи является KF. Если выходное напряжение возбудителя больше параметра Value of EFD at which feedback gain changes, E_FDN (pu), усилением обратной связи является KN. Обратитесь к документации для блока Filtered Derivative для точных дискретных и непрерывных реализаций.

  • EFEmin и EFEmax являются минимальными и максимальными пределами насыщения для выходного полевого напряжения возбудителя EFE.

Поле текущие ограничители

Можно использовать различное поле текущие ограничители, чтобы изменить выход регулятора напряжения под небезопасными условиями работы:

  • Используйте ограничитель перевозбуждения, чтобы предотвратить перегрев обмотки возбуждения из-за чрезмерной полевой текущей потребности.

  • Используйте ограничитель недовозбуждения, чтобы повысить полевое возбуждение, когда это слишком низко, который рискует десинхронизацией.

  • Используйте статор текущий ограничитель, чтобы предотвратить перегрев обмоток статора из-за сверхтоков.

Присоедините выход любого из этих ограничителей в одной из этих точек:

  • Точка суммирования как часть обратной связи автоматического регулятора напряжения (AVR)

  • Точка поглощения, чтобы заменить обычное поведение AVR

Если вы используете статор текущий ограничитель в точке суммирования, используйте один вход VSCLsum. Если вы используете статор текущий ограничитель в точке поглощения, используйте и вход перевозбуждения, VSCLoel, и вход недовозбуждения, VSCLuel.

Возбудитель вращения AC

Эта схема иллюстрирует полную структуру возбудителя вращения AC:

В схеме:

  • Поле возбудителя текущий VFE моделируется как суммирование трех сигналов:

    • Нелинейные функциональные модели Vx насыщение выходного напряжения возбудителя.

    • Пропорциональные модели KE термина линейное соотношение между выходным напряжением возбудителя и текущим полем возбудителя.

    • Эффект размагничивания загрузки, текущей на выходном напряжении возбудителя, моделируется с помощью размагничивания постоянный KD в обратной связи.

  • Интегратор с переменной предельной подсистемой интегрирует различие между EFE и VFE, чтобы сгенерировать выходное напряжение генератора переменного тока возбудителя VE. TE является постоянной времени для этого процесса.

  • Нелинейные функциональные модели FEX отбрасывание выходного напряжения возбудителя от регулирования выпрямителя. Эта функция зависит от постоянного KC, который самого является функцией коммутирующегося реактивного сопротивления.

  • Модель VEmin и VFEmax параметров нижние и верхние пределы вращающегося возбудителя.

Порты

Входной параметр

развернуть все

Точка множества элементарных исходов регулятора напряжения, представление в относительных единицах в виде скаляра.

Типы данных: single | double

Введите от стабилизатора энергосистемы, представления в относительных единицах в виде скаляра.

Типы данных: single | double

Терминальная величина напряжения представление в относительных единицах в виде скаляра.

Типы данных: single | double

Терминальная текущая величина представление в относительных единицах в виде скаляра.

Типы данных: single | double

Введите от ограничителя перевозбуждения, представления в относительных единицах в виде скаляра.

Зависимости

  • Чтобы проигнорировать вход от ограничителя перевозбуждения, установите Alternate OEL input locations (V_OEL) на Unused.

  • Чтобы использовать вход от ограничителя перевозбуждения в точке суммирования, установите Alternate OEL input locations (V_OEL) на Summation point.

  • Чтобы использовать вход от ограничителя перевозбуждения в точке поглощения, установите Alternate OEL input locations (V_OEL) на Take-over.

Типы данных: single | double

Введите от ограничителя недовозбуждения, представления в относительных единицах в виде скаляра.

Зависимости

  • Чтобы проигнорировать вход от ограничителя недовозбуждения, установите Alternate UEL input locations (V_UEL) на Unused.

  • Чтобы использовать вход от ограничителя недовозбуждения в точке суммирования, установите Alternate UEL input locations (V_UEL) на Summation point.

  • Чтобы использовать вход от ограничителя недовозбуждения в точке поглощения, установите Alternate UEL input locations (V_UEL) на Take-over.

Типы данных: single | double

Введите от статора текущий ограничитель при использовании точки суммирования, представления в относительных единицах в виде скаляра.

Зависимости

  • Чтобы проигнорировать вход от статора текущий ограничитель, установите Alternate SCL input locations (V_SCL) на Unused.

  • Чтобы использовать вход от статора текущий ограничитель в точке суммирования, установите Alternate SCL input locations (V_SCL) на Summation point.

Типы данных: single | double

Введите от статора текущий ограничитель, чтобы предотвратить полевое перевозбуждение при использовании точки поглощения, представления в относительных единицах в виде скаляра.

Зависимости

  • Чтобы проигнорировать вход от статора текущий ограничитель, установите Alternate SCL input locations (V_SCL) на Unused.

  • Чтобы использовать вход от статора текущий ограничитель в точке поглощения, установите Alternate SCL input locations (V_SCL) на Take-over.

Типы данных: single | double

Введите от статора текущий ограничитель, чтобы предотвратить полевое недовозбуждение при использовании точки поглощения, представления в относительных единицах в виде скаляра.

Зависимости

  • Чтобы проигнорировать вход от статора текущий ограничитель, установите Alternate SCL input locations (V_SCL) на Unused.

  • Чтобы использовать вход от статора текущий ограничитель в точке поглощения, установите Alternate SCL input locations (V_SCL) на Take-over.

Типы данных: single | double

Измеренное поле на модуль, текущее из синхронной машины в виде скаляра.

Типы данных: single | double

Вывод

развернуть все

Полевое напряжение на модуль, чтобы примениться к цепи возбуждения синхронной машины, возвращенной как скаляр.

Типы данных: single | double

Параметры

развернуть все

Общий

Начальное напряжение на модуль, чтобы примениться к цепи возбуждения синхронной машины.

Время между последовательным выполнением блока. Во время выполнения блок производит выходные параметры и, при необходимости обновляет его внутреннее состояние. Для получения дополнительной информации смотрите то, Что Шаг расчета? и Настройка времени выборки.

Для наследованной операции дискретного времени задайте -1. Для операции дискретного времени задайте положительное целое число. Для операции непрерывного времени задайте 0.

Если этот блок находится в подсистеме маскированной, или другая различная подсистема, которая позволяет вам переключаться между непрерывной операцией и дискретной операцией, продвигает параметр шага расчета. Продвижение параметра шага расчета гарантирует правильное переключение между непрерывными и дискретными реализациями блока. Для получения дополнительной информации смотрите, Продвигают Параметр Маску.

Предварительное управление

Сопротивление используется в текущей системе вознаграждения. Установите этот параметр и Reactance component of load compensation, X_C (pu) к 0 отключить текущую компенсацию.

Реактивное сопротивление используется в текущей системе вознаграждения. Установите этот параметр и Resistive component of load compensation, R_C (pu) к 0 отключить текущую компенсацию.

Эквивалентная постоянная времени для фильтрации преобразователя напряжения.

Управление

Пропорциональная составляющая на модуль регулятора напряжения.

На модуль по второй интегральной составляющей регулятора напряжения.

Производное усиление регулятора напряжения.

Эквивалентное время задержки, постоянное для производного канала ПИД-регулятора.

Максимальный допустимый выход на модуль регулятора ПИДа.

Минимальный допустимый выход на модуль регулятора ПИДа.

Эквивалентное время задержки, постоянное в регуляторе напряжения. Установите этот параметр на 0 когда дополнительные движущие силы задержки незначительны.

Эквивалентное время выполнения заказа, постоянное в регуляторе напряжения. Установите этот параметр на 0 когда дополнительные ведущие движущие силы незначительны.

Усиление сопоставлено с регулятором напряжения.

Главная постоянная времени регулятора напряжения.

Максимальное выходное напряжение на модуль регулятора.

Минимальное выходное напряжение на модуль регулятора.

Обратная связь уровня блокирует постоянную времени для стабилизации системы возбуждения.

На стоимость единицы EFD, в котором изменяется усиление обратной связи.

Обратная связь уровня блокирует усиление для стабилизации системы возбуждения.

Обратная связь уровня блокирует усиление для стабилизации системы возбуждения.

Местоположение ограничителя перевозбуждения вводится.

Местоположение ограничителя недовозбуждения вводится.

Местоположение статора текущий ограничитель ввело:

  • Если вы выбираете Summation point, используйте входной порт V_SCLsum.

  • Если вы выбираете Take-over, используйте входные порты V_SCLuel и V_SCLoel.

Возбудитель

Пропорциональная константа для поля возбудителя.

Постоянная времени для поля возбудителя.

Коэффициент загрузки выпрямителя, пропорциональный коммутирующемуся реактивному сопротивлению.

Фактор размагничивания связан с реактивными сопротивлениями генератора переменного тока возбудителя.

Выходное напряжение возбудителя для первого фактора насыщения.

Фактор насыщения для первого возбудителя.

Выходное напряжение возбудителя для второго фактора насыщения.

Фактор насыщения для второго возбудителя.

Регулятор на модуль и полевое усиление источника питания генератора переменного тока.

Минимальное напряжение возбудителя на модуль выводится.

Поле возбудителя на модуль текущий верхний предел.

Ссылки

[1] Методические рекомендации IEEE для системных моделей возбуждения для исследований устойчивости энергосистемы. Станд. IEEE 421.5-2016. Пискатауэй, NJ: IEEE-SA, 2016.

Расширенные возможности

Генерация кода C/C++
Генерация кода C и C++ с помощью Simulink® Coder™.

Смотрите также

Блоки

Введенный в R2020a