predictObjectiveEvaluationTime

Предскажите время выполнения целевой функции в наборе точек

Описание

пример

time = predictObjectiveEvaluationTime(results,XTable) возвращает оцененные объективные времена оценки в точках в XTable.

Примеры

свернуть все

В этом примере показано, как оценить время оценки целевой функции в оптимизированной модели Bayesian классификации SVM.

Создайте оптимизированную модель SVM. Для получения дополнительной информации этой модели, смотрите, Оптимизируют перекрестный Подтвержденный Классификатор Используя bayesopt.

rng default
grnpop = mvnrnd([1,0],eye(2),10);
redpop = mvnrnd([0,1],eye(2),10);
redpts = zeros(100,2);
grnpts = redpts;
for i = 1:100
    grnpts(i,:) = mvnrnd(grnpop(randi(10),:),eye(2)*0.02);
    redpts(i,:) = mvnrnd(redpop(randi(10),:),eye(2)*0.02);
end
cdata = [grnpts;redpts];
grp = ones(200,1);
grp(101:200) = -1;
c = cvpartition(200,'KFold',10);
sigma = optimizableVariable('sigma',[1e-5,1e5],'Transform','log');
box = optimizableVariable('box',[1e-5,1e5],'Transform','log');
minfn = @(z)kfoldLoss(fitcsvm(cdata,grp,'CVPartition',c,...
    'KernelFunction','rbf','BoxConstraint',z.box,...
    'KernelScale',z.sigma));
results = bayesopt(minfn,[sigma,box],'IsObjectiveDeterministic',true,...
    'AcquisitionFunctionName','expected-improvement-plus','Verbose',0);

Figure contains an axes object. The axes object with title Objective function model contains 5 objects of type line, surface, contour. These objects represent Observed points, Model mean, Next point, Model minimum feasible.

Figure contains an axes object. The axes object with title Min objective vs. Number of function evaluations contains 2 objects of type line. These objects represent Min observed objective, Estimated min objective.

Предскажите время оценки для различных точек.

sigma = logspace(-5,5,11)';
box = 1e5*ones(size(sigma));
XTable = table(sigma,box);
time = predictObjectiveEvaluationTime(results,XTable);
[XTable,table(time)]
ans=11×3 table
    sigma      box      time  
    ______    _____    _______

     1e-05    1e+05    0.16022
    0.0001    1e+05    0.15589
     0.001    1e+05    0.15039
      0.01    1e+05    0.13947
       0.1    1e+05    0.14512
         1    1e+05    0.36589
        10    1e+05     1.4797
       100    1e+05    0.58789
      1000    1e+05    0.13183
     10000    1e+05     0.1214
     1e+05    1e+05    0.12741

Входные параметры

свернуть все

Байесовы результаты оптимизации в виде BayesianOptimization объект.

Предсказание указывает в виде таблицы со столбцами D, где D является количеством переменных в проблеме. Функция выполняет свои предсказания на этих точках.

Типы данных: table

Выходные аргументы

свернуть все

Предполагаемые объективные времена оценки, возвращенные как N- 1 вектор, где N количество строк XTable. Ориентировочные стоимости являются средними значениями апостериорного распределения Гауссовой модели процесса времен оценки целевой функции.

Смотрите также

|

Введенный в R2017b