Потеря классификации для обобщенной аддитивной модели (GAM)
возвращает Потерю Классификации (L
= loss(Mdl
,Tbl
,ResponseVarName
)L
), скалярное представление, как хорошо обобщенная аддитивная модель Mdl
классифицирует данные о предикторе на Tbl
по сравнению с истинным классом помечает в Tbl.ResponseVarName
.
Интерпретация L
зависит от функции потерь ('LossFun'
) и взвешивание схемы ('Weights'
). В общем случае лучшие классификаторы дают к меньшим значениям классификации потерь. 'LossFun'
по умолчанию значением является
'classiferror'
(misclassification уровень в десятичном числе).
задает опции с помощью одних или нескольких аргументов name-value в дополнение к любой из комбинаций входных аргументов в предыдущих синтаксисах. Например, L
= loss(___,Name,Value
)'LossFun','mincost'
устанавливает функцию потерь на минимальную ожидаемую misclassification функцию стоимости.
Определите тестовую ошибку классификации выборок (потеря) обобщенной аддитивной модели. Когда вы сравниваете тот же тип потери среди многих моделей, более низкая потеря указывает на лучшую прогнозную модель.
Загрузите ionosphere
набор данных. Этот набор данных имеет 34 предиктора, и 351 бинарный ответ для радара возвращается, любой плохо ('b'
) или хороший ('g'
).
load ionosphere
Случайным образом наблюдения раздела в набор обучающих данных и набор тестов со стратификацией, с помощью информации о классе в Y
. Задайте 30%-ю выборку затяжки для тестирования.
rng('default') % For reproducibility cv = cvpartition(Y,'HoldOut',0.30);
Извлеките обучение и протестируйте индексы.
trainInds = training(cv); testInds = test(cv);
Задайте наборы тестовых данных и обучение.
XTrain = X(trainInds,:); YTrain = Y(trainInds); XTest = X(testInds,:); YTest = Y(testInds);
Обучите GAM с помощью предикторов XTrain
и класс маркирует YTrain
. Методические рекомендации должны задать имена классов.
Mdl = fitcgam(XTrain,YTrain,'ClassNames',{'b','g'});
Mdl
ClassificationGAM
объект модели.
Определите, как хорошо алгоритм делает вывод путем оценки тестовой ошибки классификации выборок. По умолчанию, loss
функция ClassificationGAM
ошибка классификации оценок при помощи 'classiferror'
потеря (misclassification уровень в десятичном числе).
L = loss(Mdl,XTest,YTest)
L = 0.1052
Обученный классификатор неправильно классифицирует приблизительно 11% тестовой выборки.
Обучите обобщенную аддитивную модель (GAM), которая содержит и линейные члены и периоды взаимодействия для предикторов, и оцените потерю классификации с и без периодов взаимодействия. Задайте, включать ли периоды взаимодействия при оценке потери классификации для обучения и тестовых данных.
Загрузите ionosphere
набор данных. Этот набор данных имеет 34 предиктора, и 351 бинарный ответ для радара возвращается, любой плохо ('b'
) или хороший ('g'
).
load ionosphere
Разделите набор данных в два набора: один содержащий обучающие данные и другой содержащий новые, ненаблюдаемые тестовые данные. Зарезервируйте 50 наблюдений для нового набора тестовых данных.
rng('default') % For reproducibility n = size(X,1); newInds = randsample(n,50); inds = ~ismember(1:n,newInds); XNew = X(newInds,:); YNew = Y(newInds);
Обучите GAM с помощью предикторов X
и класс маркирует Y
. Методические рекомендации должны задать имена классов. Задайте, чтобы включать 10 самых важных периодов взаимодействия.
Mdl = fitcgam(X(inds,:),Y(inds),'ClassNames',{'b','g'},'Interactions',10)
Mdl = ClassificationGAM ResponseName: 'Y' CategoricalPredictors: [] ClassNames: {'b' 'g'} ScoreTransform: 'logit' Intercept: 2.0026 Interactions: [10x2 double] NumObservations: 301 Properties, Methods
Mdl
ClassificationGAM
объект модели.
Вычислите потерю классификации перезамены и с и без периодов взаимодействия в Mdl
. Чтобы исключить периоды взаимодействия, задайте 'IncludeInteractions',false
.
resubl = resubLoss(Mdl)
resubl = 0
resubl_nointeraction = resubLoss(Mdl,'IncludeInteractions',false)
resubl_nointeraction = 0
Оцените потерю классификации и с и без периодов взаимодействия в Mdl
.
l = loss(Mdl,XNew,YNew)
l = 0.0615
l_nointeraction = loss(Mdl,XNew,YNew,'IncludeInteractions',false)
l_nointeraction = 0.0615
Включая периоды взаимодействия не изменяет потерю классификации для Mdl
. Обученная модель классифицирует все обучающие выборки правильно и неправильно классифицирует приблизительно 6% тестовых выборок.
Mdl
— Обобщенная аддитивная модельClassificationGAM
объект модели | CompactClassificationGAM
объект моделиОбобщенная аддитивная модель в виде ClassificationGAM
или CompactClassificationGAM
объект модели.
Tbl
— Выборочные данныеВыборочные данные в виде таблицы. Каждая строка Tbl
соответствует одному наблюдению, и каждый столбец соответствует одному переменному предиктору. Многостолбцовые переменные и массивы ячеек кроме массивов ячеек из символьных векторов не позволены.
Tbl
должен содержать все предикторы, используемые, чтобы обучить Mdl
. Опционально, Tbl
может содержать столбец для переменной отклика и столбец для весов наблюдения.
Переменная отклика должна иметь совпадающий тип данных как Mdl.Y
. (Программное обеспечение обрабатывает строковые массивы как массивы ячеек из символьных векторов.), Если переменная отклика в Tbl
имеет то же имя, как переменная отклика раньше обучала Mdl
, затем вы не должны задавать ResponseVarName
.
Значения веса должны быть числовым вектором. Необходимо задать веса наблюдения в Tbl
при помощи 'Weights'
.
Если вы обучили Mdl
использование выборочных данных, содержавшихся в таблице, затем входные данные для loss
должен также быть в таблице.
Типы данных: table
ResponseVarName
— Имя переменной откликаTbl
Имя переменной отклика в виде вектора символов или строкового скаляра, содержащего имя переменной отклика в Tbl
. Например, если переменная отклика Y
хранится в Tbl.Y
, затем задайте его как 'Y'
.
Типы данных: char |
string
Y
— Метки классаКласс помечает в виде категориального, символа, или массива строк, логического или числового вектора или массива ячеек из символьных векторов. Каждая строка Y
представляет классификацию соответствующей строки X
или Tbl
.
Y
должен иметь совпадающий тип данных как Mdl.Y
. (Программное обеспечение обрабатывает строковые массивы как массивы ячеек из символьных векторов.)
Типы данных: single
| double
| categorical
| logical
| char
| string
| cell
X
— Данные о предиктореДанные о предикторе в виде числовой матрицы. Каждая строка X
соответствует одному наблюдению, и каждый столбец соответствует одному переменному предиктору.
Если вы обучили Mdl
использование выборочных данных, содержавшихся в матрице, затем входные данные для loss
должен также быть в матрице.
Типы данных: single
| double
Задайте дополнительные разделенные запятой пары Name,Value
аргументы. Name
имя аргумента и Value
соответствующее значение. Name
должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN
.
'IncludeInteractions',false,'Weights',w
задает, чтобы исключить периоды взаимодействия из модели и использовать веса наблюдения w
.IncludeInteractions
— Отметьте, чтобы включать периоды взаимодействияtrue
| false
Отметьте, чтобы включать периоды взаимодействия модели в виде true
или false
.
'IncludeInteractions'
по умолчанию значением является
true
если Mdl
содержит периоды взаимодействия. Значением должен быть false
если модель не содержит периоды взаимодействия.
Пример: 'IncludeInteractions',false
Типы данных: логический
LossFun
— Функция потерь'classiferror'
(значение по умолчанию) | 'binodeviance'
| 'exponential'
| 'hinge'
| 'logit'
| 'mincost'
| 'quadratic'
| указатель на функциюФункция потерь в виде встроенного имени функции потерь или указателя на функцию.
Эта таблица приводит доступные функции потерь. Задайте тот с помощью его соответствующего вектора символов или строкового скаляра.
Значение | Описание |
---|---|
'binodeviance' | Биномиальное отклонение |
'classiferror' | Неправильно классифицированный уровень в десятичном числе |
'exponential' | Экспоненциальная потеря |
'hinge' | Потеря стержня |
'logit' | Логистическая потеря |
'mincost' | Минимальный ожидал стоимость misclassification (для классификационных оценок, которые являются апостериорными вероятностями), |
'quadratic' | Квадратичная потеря |
Для получения дополнительной информации о функциях потерь смотрите Потерю Классификации.
Чтобы задать пользовательскую функцию потерь, используйте обозначение указателя на функцию. Функция должна иметь эту форму:
lossvalue = lossfun
(C,S,W,Cost)
Выходной аргумент lossvalue
скаляр.
Вы задаете имя функции (lossfun
).
C
n
- K
логическая матрица со строками, указывающими на класс, которому принадлежит соответствующее наблюдение. n
количество наблюдений в Tbl
или X
, и K
количество отличных классов (numel(Mdl.ClassNames)
. Порядок следования столбцов соответствует порядку класса в Mdl.ClassNames
. Создайте C
установкой C(p,q) = 1
, если наблюдение p
находится в классе q
, для каждой строки. Установите все другие элементы строки p
к 0
.
S
n
- K
числовая матрица классификационных оценок. Порядок следования столбцов соответствует порядку класса в Mdl.ClassNames
S
матрица классификационных оценок, похожих на выход predict
.
W
n
- 1 числовой вектор из весов наблюдения.
Cost
K
- K
числовая матрица затрат misclassification. Например, Cost = ones(K) – eye(K)
задает стоимость 0
для правильной классификации и 1
для misclassification.
Пример: 'LossFun','binodeviance'
Типы данных: char |
string
| function_handle
Weights
— Веса наблюденияones(size(X,1),1)
(значение по умолчанию) | вектор из скалярных значений | имя переменной в Tbl
Веса наблюдения в виде вектора из скалярных значений или имени переменной в Tbl
. Программное обеспечение взвешивает наблюдения в каждой строке X
или Tbl
с соответствующим значением в Weights
. Размер Weights
должен равняться количеству строк в X
или Tbl
.
Если вы задаете входные данные как таблицу Tbl
, затем Weights
может быть имя переменной в Tbl
это содержит числовой вектор. В этом случае необходимо задать Weights
как вектор символов или строковый скаляр. Например, если вектор весов W
хранится в Tbl.W
, затем задайте его как 'W'
.
loss
нормирует веса в каждом классе, чтобы составить в целом значение априорной вероятности соответствующего класса.
Типы данных: single
| double
| char
| string
Функции Classification loss измеряют прогнозирующую погрешность моделей классификации. Когда вы сравниваете тот же тип потери среди многих моделей, более низкая потеря указывает на лучшую прогнозную модель.
Предположим следующее:
L является средневзвешенной потерей классификации.
n является объемом выборки.
yj является наблюдаемой меткой класса. Программные коды это как –1 или 1, указывая на отрицательный или положительный класс (или первый или второй класс в ClassNames
свойство), соответственно.
f (Xj) является классификационной оценкой положительного класса для наблюдения (строка) j данных о предикторе X.
mj = yj f (Xj) является классификационной оценкой для классификации наблюдения j в класс, соответствующий yj. Положительные значения mj указывают на правильную классификацию и не способствуют очень средней потере. Отрицательные величины mj указывают на неправильную классификацию и значительно способствуют средней потере.
Весом для наблюдения j является wj. Программное обеспечение нормирует веса наблюдения так, чтобы они суммировали к соответствующей предшествующей вероятности класса. Программное обеспечение также нормирует априорные вероятности так, чтобы они суммировали к 1. Поэтому
Эта таблица описывает поддерживаемые функции потерь, которые можно задать при помощи 'LossFun'
аргумент значения имени.
Функция потерь | Значение LossFun | Уравнение |
---|---|---|
Биномиальное отклонение | 'binodeviance' | |
Экспоненциальная потеря | 'exponential' | |
Неправильно классифицированный уровень в десятичном числе | 'classiferror' | метка класса, соответствующая классу с максимальным счетом. I {·} является функцией индикатора. |
Потеря стержня | 'hinge' | |
Потеря логита | 'logit' | |
Минимальный ожидал стоимость misclassification | 'mincost' |
Программное обеспечение вычисляет взвешенную минимальную ожидаемую стоимость классификации с помощью этой процедуры для наблюдений j = 1..., n.
Взвешенное среднее минимального ожидало, что потеря стоимости misclassification Если вы используете матрицу стоимости по умолчанию (чье значение элемента 0 для правильной классификации и 1 для неправильной классификации), то |
Квадратичная потеря | 'quadratic' |
Этот рисунок сравнивает функции потерь (кроме 'mincost'
) по счету m для одного наблюдения. Некоторые функции нормированы, чтобы пройти через точку (0,1).
У вас есть модифицированная версия этого примера. Вы хотите открыть этот пример со своими редактированиями?
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.