Возобновите обучение Гауссовой модели классификации ядер
продолжает обучение с теми же опциями, используемыми, чтобы обучить UpdatedMdl = resume(Mdl,X,Y)Mdl, включая обучающие данные (данные о предикторе в X и класс помечает в Y) и расширение функции. Обучение запускается в текущих предполагаемых параметрах в Mdl. Функция возвращает новую бинарную Гауссову модель UpdatedMdl классификации ядер.
продолжает обучение с данными о предикторе в UpdatedMdl = resume(Mdl,Tbl,ResponseVarName)Tbl и истинный класс помечает в Tbl.ResponseVarName.
продолжает обучение с данными о предикторе в таблице UpdatedMdl = resume(Mdl,Tbl,Y)Tbl и истинный класс помечает в Y.
задает опции с помощью одного или нескольких аргументов пары "имя-значение" в дополнение к любой из комбинаций входных аргументов в предыдущих синтаксисах. Например, можно изменить опции управления сходимостью, такие как допуски сходимости и максимальное количество дополнительных итераций оптимизации.UpdatedMdl = resume(___,Name,Value)
[ также возвращает подходящую информацию в массиве структур UpdatedMdl,FitInfo] = resume(___)FitInfo.
Загрузите ionosphere набор данных. Этот набор данных имеет 34 предиктора, и 351 бинарный ответ для радара возвращается, любой плохо ('b') или хороший ('g').
load ionosphereРазделите набор данных в наборы обучающих данных и наборы тестов. Задайте 20%-ю выборку затяжки для набора тестов.
rng('default') % For reproducibility Partition = cvpartition(Y,'Holdout',0.20); trainingInds = training(Partition); % Indices for the training set XTrain = X(trainingInds,:); YTrain = Y(trainingInds); testInds = test(Partition); % Indices for the test set XTest = X(testInds,:); YTest = Y(testInds);
Обучите бинарную модель классификации ядер, которая идентифицирует, плох ли радарный возврат ('b') или хороший ('g').
Mdl = fitckernel(XTrain,YTrain,'IterationLimit',5,'Verbose',1);
|=================================================================================================================| | Solver | Pass | Iteration | Objective | Step | Gradient | Relative | sum(beta~=0) | | | | | | | magnitude | change in Beta | | |=================================================================================================================| | LBFGS | 1 | 0 | 1.000000e+00 | 0.000000e+00 | 2.811388e-01 | | 0 | | LBFGS | 1 | 1 | 7.585395e-01 | 4.000000e+00 | 3.594306e-01 | 1.000000e+00 | 2048 | | LBFGS | 1 | 2 | 7.160994e-01 | 1.000000e+00 | 2.028470e-01 | 6.923988e-01 | 2048 | | LBFGS | 1 | 3 | 6.825272e-01 | 1.000000e+00 | 2.846975e-02 | 2.388909e-01 | 2048 | | LBFGS | 1 | 4 | 6.699435e-01 | 1.000000e+00 | 1.779359e-02 | 1.325304e-01 | 2048 | | LBFGS | 1 | 5 | 6.535619e-01 | 1.000000e+00 | 2.669039e-01 | 4.112952e-01 | 2048 | |=================================================================================================================|
Mdl ClassificationKernel модель.
Предскажите метки набора тестов, создайте матрицу беспорядка для набора тестов и оцените ошибку классификации для набора тестов.
label = predict(Mdl,XTest); ConfusionTest = confusionchart(YTest,label);

L = loss(Mdl,XTest,YTest)
L = 0.3594
Mdl неправильно классифицирует весь плохой радар, возвращается как хорошая прибыль.
Продолжите обучение при помощи resume. Эта функция продолжает обучение с теми же опциями, используемыми для учебного Mdl.
UpdatedMdl = resume(Mdl,XTrain,YTrain);
|=================================================================================================================| | Solver | Pass | Iteration | Objective | Step | Gradient | Relative | sum(beta~=0) | | | | | | | magnitude | change in Beta | | |=================================================================================================================| | LBFGS | 1 | 0 | 6.535619e-01 | 0.000000e+00 | 2.669039e-01 | | 2048 | | LBFGS | 1 | 1 | 6.132547e-01 | 1.000000e+00 | 6.355537e-03 | 1.522092e-01 | 2048 | | LBFGS | 1 | 2 | 5.938316e-01 | 4.000000e+00 | 3.202847e-02 | 1.498036e-01 | 2048 | | LBFGS | 1 | 3 | 4.169274e-01 | 1.000000e+00 | 1.530249e-01 | 7.234253e-01 | 2048 | | LBFGS | 1 | 4 | 3.679212e-01 | 5.000000e-01 | 2.740214e-01 | 2.495886e-01 | 2048 | | LBFGS | 1 | 5 | 3.332261e-01 | 1.000000e+00 | 1.423488e-02 | 9.558680e-02 | 2048 | | LBFGS | 1 | 6 | 3.235335e-01 | 1.000000e+00 | 7.117438e-03 | 7.137260e-02 | 2048 | | LBFGS | 1 | 7 | 3.112331e-01 | 1.000000e+00 | 6.049822e-02 | 1.252157e-01 | 2048 | | LBFGS | 1 | 8 | 2.972144e-01 | 1.000000e+00 | 7.117438e-03 | 5.796240e-02 | 2048 | | LBFGS | 1 | 9 | 2.837450e-01 | 1.000000e+00 | 8.185053e-02 | 1.484733e-01 | 2048 | | LBFGS | 1 | 10 | 2.797642e-01 | 1.000000e+00 | 3.558719e-02 | 5.856842e-02 | 2048 | | LBFGS | 1 | 11 | 2.771280e-01 | 1.000000e+00 | 2.846975e-02 | 2.349433e-02 | 2048 | | LBFGS | 1 | 12 | 2.741570e-01 | 1.000000e+00 | 3.914591e-02 | 3.113194e-02 | 2048 | | LBFGS | 1 | 13 | 2.725701e-01 | 5.000000e-01 | 1.067616e-01 | 8.729821e-02 | 2048 | | LBFGS | 1 | 14 | 2.667147e-01 | 1.000000e+00 | 3.914591e-02 | 3.491723e-02 | 2048 | | LBFGS | 1 | 15 | 2.621152e-01 | 1.000000e+00 | 7.117438e-03 | 5.104726e-02 | 2048 | | LBFGS | 1 | 16 | 2.601652e-01 | 1.000000e+00 | 3.558719e-02 | 3.764904e-02 | 2048 | | LBFGS | 1 | 17 | 2.589052e-01 | 1.000000e+00 | 3.202847e-02 | 3.655744e-02 | 2048 | | LBFGS | 1 | 18 | 2.583185e-01 | 1.000000e+00 | 7.117438e-03 | 6.490571e-02 | 2048 | | LBFGS | 1 | 19 | 2.556482e-01 | 1.000000e+00 | 9.252669e-02 | 4.601390e-02 | 2048 | | LBFGS | 1 | 20 | 2.542643e-01 | 1.000000e+00 | 7.117438e-02 | 4.141838e-02 | 2048 | |=================================================================================================================| | Solver | Pass | Iteration | Objective | Step | Gradient | Relative | sum(beta~=0) | | | | | | | magnitude | change in Beta | | |=================================================================================================================| | LBFGS | 1 | 21 | 2.532117e-01 | 1.000000e+00 | 1.067616e-02 | 1.661720e-02 | 2048 | | LBFGS | 1 | 22 | 2.529890e-01 | 1.000000e+00 | 2.135231e-02 | 1.231678e-02 | 2048 | | LBFGS | 1 | 23 | 2.523232e-01 | 1.000000e+00 | 3.202847e-02 | 1.958586e-02 | 2048 | | LBFGS | 1 | 24 | 2.506736e-01 | 1.000000e+00 | 1.779359e-02 | 2.474613e-02 | 2048 | | LBFGS | 1 | 25 | 2.501995e-01 | 1.000000e+00 | 1.779359e-02 | 2.514352e-02 | 2048 | | LBFGS | 1 | 26 | 2.488242e-01 | 1.000000e+00 | 3.558719e-03 | 1.531810e-02 | 2048 | | LBFGS | 1 | 27 | 2.485295e-01 | 5.000000e-01 | 3.202847e-02 | 1.229760e-02 | 2048 | | LBFGS | 1 | 28 | 2.482244e-01 | 1.000000e+00 | 4.270463e-02 | 8.970983e-03 | 2048 | | LBFGS | 1 | 29 | 2.479714e-01 | 1.000000e+00 | 3.558719e-03 | 7.393900e-03 | 2048 | | LBFGS | 1 | 30 | 2.477316e-01 | 1.000000e+00 | 3.202847e-02 | 3.268087e-03 | 2048 | | LBFGS | 1 | 31 | 2.476178e-01 | 2.500000e-01 | 3.202847e-02 | 5.445890e-03 | 2048 | | LBFGS | 1 | 32 | 2.474874e-01 | 1.000000e+00 | 1.779359e-02 | 3.535903e-03 | 2048 | | LBFGS | 1 | 33 | 2.473980e-01 | 1.000000e+00 | 7.117438e-03 | 2.821725e-03 | 2048 | | LBFGS | 1 | 34 | 2.472935e-01 | 1.000000e+00 | 3.558719e-03 | 2.699880e-03 | 2048 | | LBFGS | 1 | 35 | 2.471418e-01 | 1.000000e+00 | 3.558719e-03 | 1.242523e-02 | 2048 | | LBFGS | 1 | 36 | 2.469862e-01 | 1.000000e+00 | 2.846975e-02 | 7.895605e-03 | 2048 | | LBFGS | 1 | 37 | 2.469598e-01 | 1.000000e+00 | 2.135231e-02 | 6.657676e-03 | 2048 | | LBFGS | 1 | 38 | 2.466941e-01 | 1.000000e+00 | 3.558719e-02 | 4.654690e-03 | 2048 | | LBFGS | 1 | 39 | 2.466660e-01 | 5.000000e-01 | 1.423488e-02 | 2.885769e-03 | 2048 | | LBFGS | 1 | 40 | 2.465605e-01 | 1.000000e+00 | 3.558719e-03 | 4.562565e-03 | 2048 | |=================================================================================================================| | Solver | Pass | Iteration | Objective | Step | Gradient | Relative | sum(beta~=0) | | | | | | | magnitude | change in Beta | | |=================================================================================================================| | LBFGS | 1 | 41 | 2.465362e-01 | 1.000000e+00 | 1.423488e-02 | 5.652180e-03 | 2048 | | LBFGS | 1 | 42 | 2.463528e-01 | 1.000000e+00 | 3.558719e-03 | 2.389759e-03 | 2048 | | LBFGS | 1 | 43 | 2.463207e-01 | 1.000000e+00 | 1.511170e-03 | 3.738286e-03 | 2048 | | LBFGS | 1 | 44 | 2.462585e-01 | 5.000000e-01 | 7.117438e-02 | 2.321693e-03 | 2048 | | LBFGS | 1 | 45 | 2.461742e-01 | 1.000000e+00 | 7.117438e-03 | 2.599725e-03 | 2048 | | LBFGS | 1 | 46 | 2.461434e-01 | 1.000000e+00 | 3.202847e-02 | 3.186923e-03 | 2048 | | LBFGS | 1 | 47 | 2.461115e-01 | 1.000000e+00 | 7.117438e-03 | 1.530711e-03 | 2048 | | LBFGS | 1 | 48 | 2.460814e-01 | 1.000000e+00 | 1.067616e-02 | 1.811714e-03 | 2048 | | LBFGS | 1 | 49 | 2.460533e-01 | 5.000000e-01 | 1.423488e-02 | 1.012252e-03 | 2048 | | LBFGS | 1 | 50 | 2.460111e-01 | 1.000000e+00 | 1.423488e-02 | 4.166762e-03 | 2048 | | LBFGS | 1 | 51 | 2.459414e-01 | 1.000000e+00 | 1.067616e-02 | 3.271946e-03 | 2048 | | LBFGS | 1 | 52 | 2.458809e-01 | 1.000000e+00 | 1.423488e-02 | 1.846440e-03 | 2048 | | LBFGS | 1 | 53 | 2.458479e-01 | 1.000000e+00 | 1.067616e-02 | 1.180871e-03 | 2048 | | LBFGS | 1 | 54 | 2.458146e-01 | 1.000000e+00 | 1.455008e-03 | 1.422954e-03 | 2048 | | LBFGS | 1 | 55 | 2.457878e-01 | 1.000000e+00 | 7.117438e-03 | 1.880892e-03 | 2048 | | LBFGS | 1 | 56 | 2.457519e-01 | 1.000000e+00 | 2.491103e-02 | 1.074764e-03 | 2048 | | LBFGS | 1 | 57 | 2.457420e-01 | 1.000000e+00 | 7.473310e-02 | 9.511878e-04 | 2048 | | LBFGS | 1 | 58 | 2.457212e-01 | 1.000000e+00 | 3.558719e-03 | 3.718564e-04 | 2048 | | LBFGS | 1 | 59 | 2.457089e-01 | 1.000000e+00 | 4.270463e-02 | 6.237270e-04 | 2048 | | LBFGS | 1 | 60 | 2.457047e-01 | 5.000000e-01 | 1.423488e-02 | 3.647573e-04 | 2048 | |=================================================================================================================| | Solver | Pass | Iteration | Objective | Step | Gradient | Relative | sum(beta~=0) | | | | | | | magnitude | change in Beta | | |=================================================================================================================| | LBFGS | 1 | 61 | 2.456991e-01 | 1.000000e+00 | 1.423488e-02 | 5.666884e-04 | 2048 | | LBFGS | 1 | 62 | 2.456898e-01 | 1.000000e+00 | 1.779359e-02 | 4.697056e-04 | 2048 | | LBFGS | 1 | 63 | 2.456792e-01 | 1.000000e+00 | 1.779359e-02 | 5.984927e-04 | 2048 | | LBFGS | 1 | 64 | 2.456603e-01 | 1.000000e+00 | 1.403782e-03 | 5.414985e-04 | 2048 | | LBFGS | 1 | 65 | 2.456482e-01 | 1.000000e+00 | 3.558719e-03 | 6.506293e-04 | 2048 | | LBFGS | 1 | 66 | 2.456358e-01 | 1.000000e+00 | 1.476262e-03 | 1.284139e-03 | 2048 | | LBFGS | 1 | 67 | 2.456124e-01 | 1.000000e+00 | 3.558719e-03 | 8.636596e-04 | 2048 | | LBFGS | 1 | 68 | 2.455980e-01 | 1.000000e+00 | 1.067616e-02 | 9.861527e-04 | 2048 | | LBFGS | 1 | 69 | 2.455780e-01 | 1.000000e+00 | 1.067616e-02 | 5.102487e-04 | 2048 | | LBFGS | 1 | 70 | 2.455633e-01 | 1.000000e+00 | 3.558719e-03 | 1.228077e-03 | 2048 | | LBFGS | 1 | 71 | 2.455449e-01 | 1.000000e+00 | 1.423488e-02 | 7.864590e-04 | 2048 | | LBFGS | 1 | 72 | 2.455261e-01 | 1.000000e+00 | 3.558719e-02 | 1.090815e-03 | 2048 | | LBFGS | 1 | 73 | 2.455142e-01 | 1.000000e+00 | 1.067616e-02 | 1.701506e-03 | 2048 | | LBFGS | 1 | 74 | 2.455075e-01 | 1.000000e+00 | 1.779359e-02 | 1.504577e-03 | 2048 | | LBFGS | 1 | 75 | 2.455008e-01 | 1.000000e+00 | 3.914591e-02 | 1.144021e-03 | 2048 | | LBFGS | 1 | 76 | 2.454943e-01 | 1.000000e+00 | 2.491103e-02 | 3.015254e-04 | 2048 | | LBFGS | 1 | 77 | 2.454918e-01 | 5.000000e-01 | 3.202847e-02 | 9.837523e-04 | 2048 | | LBFGS | 1 | 78 | 2.454870e-01 | 1.000000e+00 | 1.779359e-02 | 4.328953e-04 | 2048 | | LBFGS | 1 | 79 | 2.454865e-01 | 5.000000e-01 | 3.558719e-03 | 7.126815e-04 | 2048 | | LBFGS | 1 | 80 | 2.454775e-01 | 1.000000e+00 | 5.693950e-02 | 8.992562e-04 | 2048 | |=================================================================================================================| | Solver | Pass | Iteration | Objective | Step | Gradient | Relative | sum(beta~=0) | | | | | | | magnitude | change in Beta | | |=================================================================================================================| | LBFGS | 1 | 81 | 2.454686e-01 | 1.000000e+00 | 1.183730e-03 | 1.590246e-04 | 2048 | | LBFGS | 1 | 82 | 2.454612e-01 | 1.000000e+00 | 2.135231e-02 | 1.389570e-04 | 2048 | | LBFGS | 1 | 83 | 2.454506e-01 | 1.000000e+00 | 3.558719e-03 | 6.162089e-04 | 2048 | | LBFGS | 1 | 84 | 2.454436e-01 | 1.000000e+00 | 1.423488e-02 | 1.877414e-03 | 2048 | | LBFGS | 1 | 85 | 2.454378e-01 | 1.000000e+00 | 1.423488e-02 | 3.370852e-04 | 2048 | | LBFGS | 1 | 86 | 2.454249e-01 | 1.000000e+00 | 1.423488e-02 | 8.133615e-04 | 2048 | | LBFGS | 1 | 87 | 2.454101e-01 | 1.000000e+00 | 1.067616e-02 | 3.872088e-04 | 2048 | | LBFGS | 1 | 88 | 2.453963e-01 | 1.000000e+00 | 1.779359e-02 | 5.670260e-04 | 2048 | | LBFGS | 1 | 89 | 2.453866e-01 | 1.000000e+00 | 1.067616e-02 | 1.444984e-03 | 2048 | | LBFGS | 1 | 90 | 2.453821e-01 | 1.000000e+00 | 7.117438e-03 | 2.457270e-03 | 2048 | | LBFGS | 1 | 91 | 2.453790e-01 | 5.000000e-01 | 6.761566e-02 | 8.228766e-04 | 2048 | | LBFGS | 1 | 92 | 2.453603e-01 | 1.000000e+00 | 2.135231e-02 | 1.084233e-03 | 2048 | | LBFGS | 1 | 93 | 2.453540e-01 | 1.000000e+00 | 2.135231e-02 | 2.060005e-04 | 2048 | | LBFGS | 1 | 94 | 2.453482e-01 | 1.000000e+00 | 1.779359e-02 | 1.560883e-04 | 2048 | | LBFGS | 1 | 95 | 2.453461e-01 | 1.000000e+00 | 1.779359e-02 | 1.614693e-03 | 2048 | | LBFGS | 1 | 96 | 2.453371e-01 | 1.000000e+00 | 3.558719e-02 | 2.145835e-04 | 2048 | | LBFGS | 1 | 97 | 2.453305e-01 | 1.000000e+00 | 4.270463e-02 | 7.602088e-04 | 2048 | | LBFGS | 1 | 98 | 2.453283e-01 | 2.500000e-01 | 2.135231e-02 | 3.422253e-04 | 2048 | | LBFGS | 1 | 99 | 2.453246e-01 | 1.000000e+00 | 3.558719e-03 | 3.872561e-04 | 2048 | | LBFGS | 1 | 100 | 2.453214e-01 | 1.000000e+00 | 3.202847e-02 | 1.732237e-04 | 2048 | |=================================================================================================================| | Solver | Pass | Iteration | Objective | Step | Gradient | Relative | sum(beta~=0) | | | | | | | magnitude | change in Beta | | |=================================================================================================================| | LBFGS | 1 | 101 | 2.453168e-01 | 1.000000e+00 | 1.067616e-02 | 3.065286e-04 | 2048 | | LBFGS | 1 | 102 | 2.453155e-01 | 5.000000e-01 | 4.626335e-02 | 3.402368e-04 | 2048 | | LBFGS | 1 | 103 | 2.453136e-01 | 1.000000e+00 | 1.779359e-02 | 2.215029e-04 | 2048 | | LBFGS | 1 | 104 | 2.453119e-01 | 1.000000e+00 | 3.202847e-02 | 4.142355e-04 | 2048 | | LBFGS | 1 | 105 | 2.453093e-01 | 1.000000e+00 | 1.423488e-02 | 2.186007e-04 | 2048 | | LBFGS | 1 | 106 | 2.453090e-01 | 1.000000e+00 | 2.846975e-02 | 1.338602e-03 | 2048 | | LBFGS | 1 | 107 | 2.453048e-01 | 1.000000e+00 | 1.423488e-02 | 3.208296e-04 | 2048 | | LBFGS | 1 | 108 | 2.453040e-01 | 1.000000e+00 | 3.558719e-02 | 1.294488e-03 | 2048 | | LBFGS | 1 | 109 | 2.452977e-01 | 1.000000e+00 | 1.423488e-02 | 8.328380e-04 | 2048 | | LBFGS | 1 | 110 | 2.452934e-01 | 1.000000e+00 | 2.135231e-02 | 5.149259e-04 | 2048 | | LBFGS | 1 | 111 | 2.452886e-01 | 1.000000e+00 | 1.779359e-02 | 3.650664e-04 | 2048 | | LBFGS | 1 | 112 | 2.452854e-01 | 1.000000e+00 | 1.067616e-02 | 2.633981e-04 | 2048 | | LBFGS | 1 | 113 | 2.452836e-01 | 1.000000e+00 | 1.067616e-02 | 1.804300e-04 | 2048 | | LBFGS | 1 | 114 | 2.452817e-01 | 1.000000e+00 | 7.117438e-03 | 4.251642e-04 | 2048 | | LBFGS | 1 | 115 | 2.452741e-01 | 1.000000e+00 | 1.779359e-02 | 9.018440e-04 | 2048 | | LBFGS | 1 | 116 | 2.452691e-01 | 1.000000e+00 | 2.135231e-02 | 9.941716e-05 | 2048 | |=================================================================================================================|
Предскажите метки набора тестов, создайте матрицу беспорядка для набора тестов и оцените ошибку классификации для набора тестов.
UpdatedLabel = predict(UpdatedMdl,XTest); UpdatedConfusionTest = confusionchart(YTest,UpdatedLabel);

UpdatedL = loss(UpdatedMdl,XTest,YTest)
UpdatedL = 0.1284
Ошибочные уменьшения классификации после resume обновляет модель классификации с большим количеством итераций.
Загрузите ionosphere набор данных. Этот набор данных имеет 34 предиктора, и 351 бинарный ответ для радара возвращается, любой плохо ('b') или хороший ('g').
load ionosphereРазделите набор данных в наборы обучающих данных и наборы тестов. Задайте 20%-ю выборку затяжки для набора тестов.
rng('default') % For reproducibility Partition = cvpartition(Y,'Holdout',0.20); trainingInds = training(Partition); % Indices for the training set XTrain = X(trainingInds,:); YTrain = Y(trainingInds); testInds = test(Partition); % Indices for the test set XTest = X(testInds,:); YTest = Y(testInds);
Обучите бинарную модель классификации ядер с расслабленными опциями обучения управления сходимостью при помощи аргументов пары "имя-значение" 'BetaTolerance' и 'GradientTolerance'.
[Mdl,FitInfo] = fitckernel(XTrain,YTrain,'Verbose',1, ... 'BetaTolerance',1e-1,'GradientTolerance',1e-1);
|=================================================================================================================| | Solver | Pass | Iteration | Objective | Step | Gradient | Relative | sum(beta~=0) | | | | | | | magnitude | change in Beta | | |=================================================================================================================| | LBFGS | 1 | 0 | 1.000000e+00 | 0.000000e+00 | 2.811388e-01 | | 0 | | LBFGS | 1 | 1 | 7.585395e-01 | 4.000000e+00 | 3.594306e-01 | 1.000000e+00 | 2048 | | LBFGS | 1 | 2 | 7.160994e-01 | 1.000000e+00 | 2.028470e-01 | 6.923988e-01 | 2048 | | LBFGS | 1 | 3 | 6.825272e-01 | 1.000000e+00 | 2.846975e-02 | 2.388909e-01 | 2048 | |=================================================================================================================|
Mdl ClassificationKernel модель.
Предскажите метки набора тестов, создайте матрицу беспорядка для набора тестов и оцените ошибку классификации для набора тестов
label = predict(Mdl,XTest); ConfusionTest = confusionchart(YTest,label);

L = loss(Mdl,XTest,YTest)
L = 0.3594
Mdl неправильно классифицирует весь плохой радар, возвращается как хорошая прибыль.
Продолжите обучение при помощи resume с модифицированной сходимостью управляют опциями обучения.
[UpdatedMdl,UpdatedFitInfo] = resume(Mdl,XTrain,YTrain, ... 'BetaTolerance',1e-2,'GradientTolerance',1e-2);
|=================================================================================================================| | Solver | Pass | Iteration | Objective | Step | Gradient | Relative | sum(beta~=0) | | | | | | | magnitude | change in Beta | | |=================================================================================================================| | LBFGS | 1 | 0 | 6.825272e-01 | 0.000000e+00 | 2.846975e-02 | | 2048 | | LBFGS | 1 | 1 | 6.692805e-01 | 2.000000e+00 | 2.846975e-02 | 1.389258e-01 | 2048 | | LBFGS | 1 | 2 | 6.466824e-01 | 1.000000e+00 | 2.348754e-01 | 4.149425e-01 | 2048 | | LBFGS | 1 | 3 | 5.441382e-01 | 2.000000e+00 | 1.743772e-01 | 5.344538e-01 | 2048 | | LBFGS | 1 | 4 | 5.222333e-01 | 1.000000e+00 | 3.309609e-01 | 7.530878e-01 | 2048 | | LBFGS | 1 | 5 | 3.776579e-01 | 1.000000e+00 | 1.103203e-01 | 6.532621e-01 | 2048 | | LBFGS | 1 | 6 | 3.523520e-01 | 1.000000e+00 | 5.338078e-02 | 1.384232e-01 | 2048 | | LBFGS | 1 | 7 | 3.422319e-01 | 5.000000e-01 | 3.202847e-02 | 9.703897e-02 | 2048 | | LBFGS | 1 | 8 | 3.341895e-01 | 1.000000e+00 | 3.202847e-02 | 5.009485e-02 | 2048 | | LBFGS | 1 | 9 | 3.199302e-01 | 1.000000e+00 | 4.982206e-02 | 8.038014e-02 | 2048 | | LBFGS | 1 | 10 | 3.017904e-01 | 1.000000e+00 | 1.423488e-02 | 2.845012e-01 | 2048 | | LBFGS | 1 | 11 | 2.853480e-01 | 1.000000e+00 | 3.558719e-02 | 9.799137e-02 | 2048 | | LBFGS | 1 | 12 | 2.753979e-01 | 1.000000e+00 | 3.914591e-02 | 9.975305e-02 | 2048 | | LBFGS | 1 | 13 | 2.647492e-01 | 1.000000e+00 | 3.914591e-02 | 9.713710e-02 | 2048 | | LBFGS | 1 | 14 | 2.639242e-01 | 1.000000e+00 | 1.423488e-02 | 6.721803e-02 | 2048 | | LBFGS | 1 | 15 | 2.617385e-01 | 1.000000e+00 | 1.779359e-02 | 2.625089e-02 | 2048 | | LBFGS | 1 | 16 | 2.598600e-01 | 1.000000e+00 | 7.117438e-02 | 3.338724e-02 | 2048 | | LBFGS | 1 | 17 | 2.594176e-01 | 1.000000e+00 | 1.067616e-02 | 2.441171e-02 | 2048 | | LBFGS | 1 | 18 | 2.579350e-01 | 1.000000e+00 | 3.202847e-02 | 2.979246e-02 | 2048 | | LBFGS | 1 | 19 | 2.570669e-01 | 1.000000e+00 | 1.779359e-02 | 4.432998e-02 | 2048 | | LBFGS | 1 | 20 | 2.552954e-01 | 1.000000e+00 | 1.769940e-03 | 1.899895e-02 | 2048 | |=================================================================================================================|
Предскажите метки набора тестов, создайте матрицу беспорядка для набора тестов и оцените ошибку классификации для набора тестов.
UpdatedLabel = predict(UpdatedMdl,XTest); UpdatedConfusionTest = confusionchart(YTest,UpdatedLabel);

UpdatedL = loss(UpdatedMdl,XTest,YTest)
UpdatedL = 0.1140
Ошибочные уменьшения классификации после resume обновляет модель классификации с меньшими допусками сходимости.
Отобразите выходные параметры FitInfo и UpdatedFitInfo.
FitInfo
FitInfo = struct with fields:
Solver: 'LBFGS-fast'
LossFunction: 'hinge'
Lambda: 0.0036
BetaTolerance: 0.1000
GradientTolerance: 0.1000
ObjectiveValue: 0.6825
GradientMagnitude: 0.0285
RelativeChangeInBeta: 0.2389
FitTime: 0.1089
History: [1x1 struct]
UpdatedFitInfo
UpdatedFitInfo = struct with fields:
Solver: 'LBFGS-fast'
LossFunction: 'hinge'
Lambda: 0.0036
BetaTolerance: 0.0100
GradientTolerance: 0.0100
ObjectiveValue: 0.2553
GradientMagnitude: 0.0018
RelativeChangeInBeta: 0.0190
FitTime: 0.3023
History: [1x1 struct]
Оба обучения завершает работу, потому что программное обеспечение удовлетворяет абсолютному допуску градиента.
Постройте величину градиента по сравнению с количеством итераций при помощи UpdatedFitInfo.History.GradientMagnitude. Обратите внимание на то, что History поле UpdatedFitInfo включает информацию в History поле FitInfo.
semilogy(UpdatedFitInfo.History.GradientMagnitude,'o-') ax = gca; ax.XTick = 1:25; ax.XTickLabel = UpdatedFitInfo.History.IterationNumber; grid on xlabel('Number of Iterations') ylabel('Gradient Magnitude')

Первое обучение завершает работу после трех итераций, потому что величина градиента становится меньше, чем 1e-1. Второе обучение завершает работу после 20 итераций, потому что величина градиента становится меньше, чем 1e-2.
Mdl — Бинарная модель классификации ядерClassificationKernel объект моделиБинарная модель классификации ядер в виде ClassificationKernel объект модели. Можно создать ClassificationKernel использование объекта модели fitckernel.
X — Данные о предикторе раньше обучали MdlДанные о предикторе раньше обучали MdlВ виде n-by-p числовая матрица, где n является количеством наблюдений и p, количество предикторов.
Типы данных: single | double
Y — Метки класса раньше обучали MdlМетки класса раньше обучали MdlВ виде категориального, символа, или массива строк, логического или числового вектора или массива ячеек из символьных векторов.
Типы данных: categorical | char | string | logical | single | double | cell
Tbl — Выборочные данные раньше обучали MdlВыборочные данные раньше обучали MdlВ виде таблицы. Каждая строка Tbl соответствует одному наблюдению, и каждый столбец соответствует одному переменному предиктору. Опционально, Tbl может содержать дополнительные столбцы для весов наблюдения и переменной отклика. Tbl должен содержать все предикторы, используемые, чтобы обучить Mdl. Многостолбцовые переменные и массивы ячеек кроме массивов ячеек из символьных векторов не позволены.
Если вы обучили Mdl использование выборочных данных, содержавшихся в таблице, затем входные данные для resume должен также быть в таблице.
Примечание
resume должен запуститься только на тех же обучающих данных, и веса наблюдения раньше обучали Mdl. resume функционируйте использует те же опции обучения, используемые, чтобы обучить Mdl, включая расширение функции.
Задайте дополнительные разделенные запятой пары Name,Value аргументы. Name имя аргумента и Value соответствующее значение. Name должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN.
UpdatedMdl = resume(Mdl,X,Y,'GradientTolerance',1e-5) обучение резюме с теми же опциями, используемыми, чтобы обучить Mdl, кроме абсолютного допуска градиента.Weights — Веса наблюдения раньше обучали MdlTblВеса наблюдения раньше обучали MdlВ виде разделенной запятой пары, состоящей из 'Weights' и числовой вектор или имя переменной в Tbl.
Если Weights числовой вектор, затем размер Weights должно быть равно количеству строк в X или Tbl.
Если Weights имя переменной в Tbl, необходимо задать Weights как вектор символов или строковый скаляр. Например, если веса хранятся как Tbl.W, затем задайте Weights как 'W'. В противном случае программное обеспечение обрабатывает все столбцы Tbl, включая Tbl.W, как предикторы.
Если вы предоставляете веса, resume нормирует веса, чтобы суммировать до значения априорной вероятности в соответствующем классе.
Типы данных: double | single | char | string
BetaTolerance — Относительная погрешность на линейных коэффициентах и термине смещенияBetaTolerance значение раньше обучало Mdl (значение по умолчанию) | неотрицательный скалярОтносительная погрешность на линейных коэффициентах и термине смещения (точка пересечения) в виде разделенной запятой пары, состоящей из 'BetaTolerance' и неотрицательный скаляр.
Пусть , то есть, вектор из коэффициентов и смещения называет в итерации оптимизации t. Если , затем оптимизация завершает работу.
Если вы также задаете GradientTolerance, затем оптимизация завершает работу, когда программное обеспечение удовлетворяет любому критерию остановки.
По умолчанию значением является тот же BetaTolerance значение раньше обучало Mdl.
Пример: 'BetaTolerance',1e-6
Типы данных: single | double
GradientTolerance — Абсолютный допуск градиентаGradientTolerance значение раньше обучало Mdl (значение по умолчанию) | неотрицательный скалярАбсолютный допуск градиента в виде разделенной запятой пары, состоящей из 'GradientTolerance' и неотрицательный скаляр.
Пусть будьте вектором градиента из целевой функции относительно коэффициентов, и смещение называют в итерации оптимизации t. Если , затем оптимизация завершает работу.
Если вы также задаете BetaTolerance, затем оптимизация завершает работу, когда программное обеспечение удовлетворяет любому критерию остановки.
По умолчанию значением является тот же GradientTolerance значение раньше обучало Mdl.
Пример: 'GradientTolerance',1e-5
Типы данных: single | double
IterationLimit — Максимальное количество дополнительных итераций оптимизацииМаксимальное количество дополнительных итераций оптимизации в виде разделенной запятой пары, состоящей из 'IterationLimit' и положительное целое число.
Значение по умолчанию 1000 если преобразованные совпадения данных в памяти (Mdl.ModelParameters.BlockSize), который вы задаете при помощи аргумента пары "имя-значение" когда учебный Mdl. В противном случае значение по умолчанию равняется 100.
Обратите внимание на то, что значением по умолчанию не является значение, используемое, чтобы обучить Mdl.
Пример: 'IterationLimit',500
Типы данных: single | double
UpdatedMdl — Обновленная модель классификации ядерClassificationKernel объект моделиОбновленная модель классификации ядер, возвращенная как ClassificationKernel объект модели.
FitInfo — Детали оптимизацииДетали оптимизации, возвращенные как массив структур включая поля, описаны в этой таблице. Поля содержат технические требования аргумента пары "имя-значение" или окончательные значения.
| Поле | Описание |
|---|---|
Solver |
Метод минимизации целевой функции: |
LossFunction | Функция потерь. Любой 'hinge' или 'logit' в зависимости от типа линейной модели классификации. Смотрите Learner из fitckernel. |
Lambda | Сила термина регуляризации. Смотрите Lambda из fitckernel. |
BetaTolerance | Относительная погрешность на линейных коэффициентах и термине смещения. Смотрите BetaTolerance. |
GradientTolerance | Абсолютный допуск градиента. Смотрите GradientTolerance. |
ObjectiveValue | Значение целевой функции, когда оптимизация завершает работу. Потеря классификации плюс термин регуляризации составляет целевую функцию. |
GradientMagnitude | Норма Бога вектора градиента из целевой функции, когда оптимизация завершает работу. Смотрите GradientTolerance. |
RelativeChangeInBeta | Относительные изменения в линейных коэффициентах и смещении называют, когда оптимизация завершает работу. Смотрите BetaTolerance. |
FitTime | Прошедшее, тактовое стеной время (в секундах) требуемый подбирать модель к данным. |
History | История информации об оптимизации. Это поле также включает информацию об оптимизации от учебного Mdl. Это поле пусто ([]) если вы задаете 'Verbose',0 когда учебный Mdl. Для получения дополнительной информации смотрите Verbose и Алгоритмы fitckernel. |
К полям доступа используйте запись через точку. Например, чтобы получить доступ к вектору из значений целевой функции для каждой итерации, введите FitInfo.ObjectiveValue в Командном окне.
Хорошая практика должна исследовать FitInfo оценить, является ли сходимость удовлетворительной.
Случайное расширение функции, такое как Случайные Раковины [1] и Быстрое питание [2], является схемой аппроксимировать Гауссовы ядра алгоритма классификации ядер, чтобы использовать для больших данных в вычислительном отношении эффективным способом. Случайное расширение функции более практично для больших применений данных, которые имеют большие наборы обучающих данных, но могут также быть применены к меньшим наборам данных, которые умещаются в памяти.
Алгоритм классификации ядер ищет оптимальную гиперплоскость, которая разделяет данные на два класса после отображения функций в высокое мерное пространство. Нелинейные функции, которые не линейно отделимы в низком мерном пространстве, могут быть отделимыми в расширенном высоком мерном пространстве. Все вычисления для классификации гиперплоскостей используют только скалярные произведения. Можно получить нелинейную модель классификации, заменив скалярное произведение x 1x2' с нелинейной функцией ядра , где xi является i th наблюдение (вектор-строка), и φ (xi) является преобразованием, которое сопоставляет xi с высоким мерным пространством (названный “приемом ядра”). Однако оценивание G (x 1, x 2) (Матрица грамма) для каждой пары наблюдений является в вычислительном отношении дорогим для большого набора данных (большой n).
Случайная схема расширения функции находит случайное преобразование так, чтобы его скалярное произведение аппроксимировало Гауссово ядро. Таким образом,
где T (x) сопоставляет x в к высокому мерному пространству (). Схема Random Kitchen Sink использует случайное преобразование
где выборка, чертившая от и σ2 шкала ядра. Эта схема требует O (m p) расчет и устройство хранения данных. Схема Fastfood вводит другой случайный базис V вместо Z с помощью матриц Адамара, объединенных с Гауссовыми матрицами масштабирования. Этот случайный базис уменьшает стоимость расчета для O (m logp), и уменьшает устройство хранения данных до O (m).
fitckernel функционируйте использует схему Fastfood случайного расширения функции и использует линейную классификацию, чтобы обучить Гауссову модель классификации ядер. В отличие от решателей в fitcsvm функция, которые требуют расчета n-by-n матрица Грамма, решатель в fitckernel только потребности сформировать матрицу размера n-by-m, с m обычно намного меньше, чем n для больших данных.
[1] Rahimi, A. и Б. Речт. “Случайные Функции Крупномасштабных Машин Ядра”. Усовершенствования в Нейронных Системах обработки информации. Издание 20, 2008, стр 1177–1184.
[2] Le, Q., Т. Сарлос и А. Смола. “Быстрое питание — Аппроксимация Расширений Ядра в Логлинейное Время”. Продолжения 30-й Международной конференции по вопросам Машинного обучения. Издание 28, № 3, 2013, стр 244–252.
[3] Хуан, P. S. Х. Аврон, Т. Н. Сэйнэт, В. Синдхвани и Б. Рамабхэдрэн. “Методы ядра совпадают с Глубокими нейронными сетями на TIMIT”. 2 014 Международных конференций IEEE по вопросам Акустики, Речи и Обработки сигналов. 2014, стр 205–209.
Указания и ограничения по применению:
resume не поддерживает высокий table данные.
Значение по умолчанию для 'IterationLimit' аргумент пары "имя-значение" ослабляется к 20 при работе с длинными массивами.
resume использует мудрую блоком стратегию. Для получения дополнительной информации см. Алгоритмы fitckernel.
Для получения дополнительной информации см. Раздел "Высокие массивы".
У вас есть модифицированная версия этого примера. Вы хотите открыть этот пример со своими редактированиями?
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.