predict

Класс: ClassificationLinear

Предскажите метки для линейных моделей классификации

Описание

пример

Label = predict(Mdl,X) возвращает предсказанные метки класса для каждого наблюдения в данных о предикторе X на основе обученной, бинарной, линейной модели Mdl классификацииМетка содержит метки класса для каждой силы регуляризации в Mdl.

пример

Label = predict(Mdl,X,'ObservationsIn',dimension) задает размерность наблюдения данных о предикторе, любой 'rows' (значение по умолчанию) или 'columns'. Например, задайте 'ObservationsIn','columns' указать, что столбцы в данных о предикторе соответствуют наблюдениям.

пример

[Label,Score] = predict(___) также возвращает классификационные оценки для обоих классов с помощью любой из комбинаций входных аргументов в предыдущих синтаксисах. Score содержит классификационные оценки для каждой силы регуляризации в Mdl.

Входные параметры

развернуть все

Двоичный файл, линейная модель классификации в виде ClassificationLinear объект модели. Можно создать ClassificationLinear использование объекта модели fitclinear.

Данные о предикторе, которые будут классифицированы в виде полной или разреженной числовой матрицы или таблицы.

По умолчанию, каждая строка X соответствует одному наблюдению, и каждый столбец соответствует одной переменной.

  • Для числовой матрицы:

    • Переменные в столбцах X должен иметь тот же порядок как переменные предикторы, которые обучили Mdl.

    • Если вы обучаете Mdl с помощью таблицы (например, Tbl) и Tbl содержит только числовые переменные предикторы, затем X может быть числовая матрица. Обрабатывать числовые предикторы в Tbl как категориальные во время обучения, идентифицируйте категориальные предикторы при помощи CategoricalPredictors аргумент пары "имя-значение" fitclinear. Если Tbl содержит неоднородные переменные предикторы (например, типы числовых и категориальных данных) и X числовая матрица, затем predict выдает ошибку.

  • Для таблицы:

    • predict не поддерживает многостолбцовые переменные или массивы ячеек кроме массивов ячеек из символьных векторов.

    • Если вы обучаете Mdl с помощью таблицы (например, Tbl), затем все переменные предикторы в X должен иметь те же имена переменных и типы данных как переменные, которые обучили Mdl (сохраненный в Mdl.PredictorNames). Однако порядок следования столбцов X не должен соответствовать порядку следования столбцов Tbl. Кроме того, Tbl и X может содержать дополнительные переменные (переменные отклика, веса наблюдения, и так далее), но predict игнорирует их.

    • Если вы обучаете Mdl с помощью числовой матрицы затем предиктор называет в Mdl.PredictorNames должен совпасть с соответствующими именами переменного предиктора в X. Чтобы задать имена предиктора во время обучения, используйте PredictorNames аргумент пары "имя-значение" fitclinear. Все переменные предикторы в X должны быть числовые векторы. X может содержать дополнительные переменные (переменные отклика, веса наблюдения, и так далее), но predict игнорирует их.

Примечание

Если вы ориентируете свою матрицу предиктора так, чтобы наблюдения соответствовали столбцам и задали 'ObservationsIn','columns', затем вы можете испытать значительное сокращение во время выполнения оптимизации. Вы не можете задать 'ObservationsIn','columns' для данных о предикторе в таблице.

Типы данных: table | double | single

Размерность наблюдения данных о предикторе в виде 'columns' или 'rows'.

Примечание

Если вы ориентируете свою матрицу предиктора так, чтобы наблюдения соответствовали столбцам и задали 'ObservationsIn','columns', затем вы можете испытать значительное сокращение во время выполнения оптимизации. Вы не можете задать 'ObservationsIn','columns' для данных о предикторе в таблице.

Выходные аргументы

развернуть все

Предсказанные метки класса, возвращенные как категориальное или символьный массив, логическая или числовая матрица или массив ячеек из символьных векторов.

В большинстве случаев, Label n-by-L массив совпадающего типа данных, когда наблюдаемый класс помечает (Y) используемый, чтобы обучить Mdl. (Программное обеспечение обрабатывает строковые массивы как массивы ячеек из символьных векторов.) n является количеством наблюдений в X и L является количеством сильных мест регуляризации в Mdl.Lambda. Таким образом, Метка (iJ) предсказанная метка класса для наблюдения i использование линейной модели классификации, которая имеет силу регуляризации Mdl. Lambda (j).

Если Y символьный массив и L> 1, затем Label массив ячеек меток класса.

Классификационные оценки, возвращенные как n-by-2-by-L числовой массив. n является количеством наблюдений в X и L является количеством сильных мест регуляризации в Mdl.Lambda. Счет (iKJ) счет к классификации наблюдения i в класс k использование линейной модели классификации, которая имеет силу регуляризации Mdl. Lambda (j). Mdl.ClassNames хранит порядок классов.

Если Mdl.Learner 'logistic', затем классификационные оценки являются апостериорными вероятностями.

Примеры

развернуть все

Загрузите набор данных NLP.

load nlpdata

X разреженная матрица данных о предикторе и Y категориальный вектор из меток класса. В данных существует больше чем два класса.

Модели должны идентифицировать, являются ли подсчеты слов в веб-странице из документации Statistics and Machine Learning Toolbox™. Так, идентифицируйте метки, которые соответствуют веб-страницам документации Statistics and Machine Learning Toolbox™.

Ystats = Y == 'stats';

Обучите двоичный файл, линейная модель классификации использование целого набора данных, который может идентифицировать, являются ли подсчеты слов в веб-странице документации из документации Statistics and Machine Learning Toolbox™.

rng(1); % For reproducibility 
Mdl = fitclinear(X,Ystats);

Mdl ClassificationLinear модель.

Предскажите обучающую выборку, или перезамену, метки.

label = predict(Mdl,X);

Поскольку существует одна сила регуляризации в MdlМетка вектор-столбцы с длинами, равными количеству наблюдений.

Создайте матрицу беспорядка.

ConfusionTrain = confusionchart(Ystats,label);

Figure contains an object of type ConfusionMatrixChart.

Модель неправильно классифицирует только один 'stats' страница документации как нахождение вне документации Statistics and Machine Learning Toolbox.

Загрузите набор данных NLP и предварительно обработайте его, когда в Предсказывают Метки Обучающей выборки. Транспонируйте матрицу данных предиктора.

load nlpdata
Ystats = Y == 'stats';
X = X';

Обучите двоичный файл, линейная модель классификации, которая может идентифицировать, являются ли подсчеты слов в веб-странице документации из документации Statistics and Machine Learning Toolbox™. Задайте, чтобы протянуть 30% наблюдений. Оптимизируйте использование целевой функции SpaRSA.

rng(1) % For reproducibility 
CVMdl = fitclinear(X,Ystats,'Solver','sparsa','Holdout',0.30,...
    'ObservationsIn','columns');
Mdl = CVMdl.Trained{1};

CVMdl ClassificationPartitionedLinear модель. Это содержит свойство Trained, который является массивом ячеек 1 на 1, содержащим ClassificationLinear модель, что программное обеспечение обучило использование набора обучающих данных.

Извлеките обучение и тестовые данные из определения раздела.

trainIdx = training(CVMdl.Partition);
testIdx = test(CVMdl.Partition);

Предскажите обучение - и демонстрационные тестом метки.

labelTrain = predict(Mdl,X(:,trainIdx),'ObservationsIn','columns');
labelTest = predict(Mdl,X(:,testIdx),'ObservationsIn','columns');

Поскольку существует одна сила регуляризации в Mdl, labelTrain и labelTest вектор-столбцы с длинами, равными количеству обучения, и тестируют наблюдения, соответственно.

Создайте матрицу беспорядка для обучающих данных.

ConfusionTrain = confusionchart(Ystats(trainIdx),labelTrain);

Figure contains an object of type ConfusionMatrixChart.

Модель неправильно классифицирует только три страницы документации как нахождение вне документации Statistics and Machine Learning Toolbox.

Создайте матрицу беспорядка для тестовых данных.

ConfusionTest = confusionchart(Ystats(testIdx),labelTest);

Figure contains an object of type ConfusionMatrixChart.

Модель неправильно классифицирует три страницы документации как нахождение вне Statistics and Machine Learning Toolbox, и две страницы, как являющиеся внутри.

Оцените демонстрационные тестом, следующие вероятности класса и определите качество модели путем графического вывода кривой ROC. Линейные модели классификации возвращают апостериорные вероятности для учеников логистической регрессии только.

Загрузите набор данных NLP и предварительно обработайте его, когда в Предсказывают Демонстрационные Тестом Метки.

load nlpdata
Ystats = Y == 'stats';
X = X';

Случайным образом разделите данные в наборы обучающих данных и наборы тестов путем определения 30%-й выборки затяжки. Идентифицируйте индексы набора тестов.

cvp = cvpartition(Ystats,'Holdout',0.30);
idxTest = test(cvp);

Обучите бинарную линейную модель классификации. Подходящее использование учеников логистической регрессии SpaRSA. Чтобы протянуть набор тестов, задайте разделенную модель.

CVMdl = fitclinear(X,Ystats,'ObservationsIn','columns','CVPartition',cvp,...
    'Learner','logistic','Solver','sparsa');
Mdl = CVMdl.Trained{1};

Mdl ClassificationLinear модель обучила использование набора обучающих данных, заданного в разделе cvp только.

Предскажите демонстрационные тестом следующие вероятности класса.

[~,posterior] = predict(Mdl,X(:,idxTest),'ObservationsIn','columns');

Поскольку существует одна сила регуляризации в Mdl, posterior матрица с 2 столбцами и строками, равными количеству наблюдений набора тестов. Столбец i содержит апостериорные вероятности Mdl.ClassNames(i) учитывая конкретное наблюдение.

Получите ложные и истинные положительные уровни и оцените AUC. Укажите, что второй класс является положительным классом.

[fpr,tpr,~,auc] = perfcurve(Ystats(idxTest),posterior(:,2),Mdl.ClassNames(2));
auc
auc = 0.9985

AUC является 1, который указывает на модель, которая предсказывает хорошо.

Постройте кривую ROC.

figure;
plot(fpr,tpr)
h = gca;
h.XLim(1) = -0.1;
h.YLim(2) = 1.1;
xlabel('False positive rate')
ylabel('True positive rate')
title('ROC Curve')

Figure contains an axes object. The axes object with title ROC Curve contains an object of type line.

Кривая ROC и AUC указывают, что модель классифицирует демонстрационные тестом наблюдения почти отлично.

Чтобы определить хорошую силу штрафа лассо для линейной модели классификации, которая использует ученика логистической регрессии, сравните демонстрационные тестом значения AUC.

Загрузите набор данных NLP. Предварительно обработайте данные, когда в Предсказывают Демонстрационные Тестом Метки.

load nlpdata
Ystats = Y == 'stats';
X = X';

Создайте раздел данных, который задает к затяжке 10% наблюдений. Извлеките демонстрационные тестом индексы.

rng(10); % For reproducibility
Partition = cvpartition(Ystats,'Holdout',0.10);
testIdx = test(Partition);
XTest = X(:,testIdx);
n = sum(testIdx)
n = 3157
YTest = Ystats(testIdx);

В тестовой выборке существует 3 157 наблюдений.

Создайте набор 11 логарифмически распределенных сильных мест регуляризации от 10-6 через 10-0.5.

Lambda = logspace(-6,-0.5,11);

Обучите двоичный файл, линейные модели классификации, которые используют каждые из сильных мест регуляризации. Оптимизируйте использование целевой функции SpaRSA. Понизьте допуск на градиент целевой функции к 1e-8.

CVMdl = fitclinear(X,Ystats,'ObservationsIn','columns',...
    'CVPartition',Partition,'Learner','logistic','Solver','sparsa',...
    'Regularization','lasso','Lambda',Lambda,'GradientTolerance',1e-8)
CVMdl = 
  ClassificationPartitionedLinear
    CrossValidatedModel: 'Linear'
           ResponseName: 'Y'
        NumObservations: 31572
                  KFold: 1
              Partition: [1x1 cvpartition]
             ClassNames: [0 1]
         ScoreTransform: 'none'


  Properties, Methods

Извлеките обученную линейную модель классификации.

Mdl1 = CVMdl.Trained{1}
Mdl1 = 
  ClassificationLinear
      ResponseName: 'Y'
        ClassNames: [0 1]
    ScoreTransform: 'logit'
              Beta: [34023x11 double]
              Bias: [-11.8382 -11.8382 -11.8382 -11.8382 -11.0432 ... ]
            Lambda: [1.0000e-06 3.5481e-06 1.2589e-05 4.4668e-05 ... ]
           Learner: 'logistic'


  Properties, Methods

Mdl ClassificationLinear объект модели. Поскольку Lambda последовательность сильных мест регуляризации, можно думать о Mdl как 11 моделей, один для каждой силы регуляризации в Lambda.

Оцените демонстрационные тестом предсказанные метки и следующие вероятности класса.

[label,posterior] = predict(Mdl1,XTest,'ObservationsIn','columns');
Mdl1.ClassNames;
posterior(3,1,5)
ans = 1.0000

label 3157 11 матрица предсказанных меток. Каждый столбец соответствует предсказанным меткам модели, обученной с помощью соответствующей силы регуляризации. posterior 3157 2 11 матрицами следующих вероятностей класса. Столбцы соответствуют классам, и страницы соответствуют сильным местам регуляризации. Например, posterior(3,1,5) указывает что апостериорная вероятность что первый класс (метка 0) присвоен наблюдению 3 моделью, которая использует Lambda(5) когда сила регуляризации 1.0000.

Для каждой модели вычислите AUC. Определяйте второй класс как положительный класс.

auc = 1:numel(Lambda);  % Preallocation
for j = 1:numel(Lambda)
    [~,~,~,auc(j)] = perfcurve(YTest,posterior(:,2,j),Mdl1.ClassNames(2));
end

Более высокие значения Lambda приведите к разреженности переменного предиктора, которая является хорошим качеством классификатора. Для каждой силы регуляризации обучите линейную модель классификации использование целого набора данных и тех же опций как тогда, когда вы обучили модель. Определите количество ненулевых коэффициентов на модель.

Mdl = fitclinear(X,Ystats,'ObservationsIn','columns',...
    'Learner','logistic','Solver','sparsa','Regularization','lasso',...
    'Lambda',Lambda,'GradientTolerance',1e-8);
numNZCoeff = sum(Mdl.Beta~=0);

На том же рисунке постройте демонстрационные тестом коэффициенты ошибок и частоту ненулевых коэффициентов для каждой силы регуляризации. Постройте все переменные на логарифмической шкале.

figure;
[h,hL1,hL2] = plotyy(log10(Lambda),log10(auc),...
    log10(Lambda),log10(numNZCoeff + 1)); 
hL1.Marker = 'o';
hL2.Marker = 'o';
ylabel(h(1),'log_{10} AUC')
ylabel(h(2),'log_{10} nonzero-coefficient frequency')
xlabel('log_{10} Lambda')
title('Test-Sample Statistics')
hold off

Figure contains 2 axes objects. Axes object 1 with title Test-Sample Statistics contains an object of type line. Axes object 2 contains an object of type line.

Выберите индекс силы регуляризации, которая балансирует разреженность переменного предиктора и высокий AUC. В этом случае, значение между 10-2 к 10-1 должен быть достаточным.

idxFinal = 9;

Выберите модель из Mdl с выбранной силой регуляризации.

MdlFinal = selectModels(Mdl,idxFinal);

MdlFinal ClassificationLinear модель, содержащая одну силу регуляризации. Чтобы оценить метки для новых наблюдений, передайте MdlFinal и новые данные к predict.

Больше о

развернуть все

Расширенные возможности

Введенный в R2016a