Начало работы с Statistics and Machine Learning Toolbox

Анализируйте и моделируйте данные с помощью статистики и машинного обучения

Statistics and Machine Learning Toolbox™ предоставляет функции и приложения для описания, анализа и моделирования данных. Можно использовать описательную статистику, визуализацию, и кластеризирующийся для исследовательского анализа данных, строить распределения вероятности к данным, сгенерировать случайные числа для симуляций Монте-Карло и выполнить тесты гипотезы. Алгоритмы регрессии и классификации позволяют вам чертить выводы из данных и создать прогнозные модели или в интерактивном режиме, с помощью Классификации и приложений Regression Learner, или программно, с помощью AutoML.

Для анализа многомерных данных и извлечения признаков, тулбокс обеспечивает анализ главных компонентов (PCA), регуляризацию, сокращение размерности и методы выбора признаков, которые позволяют вам идентифицировать переменные с лучшей предсказательной силой.

Тулбокс обеспечивает контролируемый, полуалгоритмы машинного обучения с учителем и без учителя, включая машины опорных векторов (SVMs), повышенные деревья решений, k - средние значения и другие методы кластеризации. Можно применить interpretability методы, такие как частичные графики зависимости и LIME, и автоматически сгенерировать код C/C++ для встроенного развертывания. Много алгоритмов тулбокса могут использоваться на наборах данных, которые являются слишком большими, чтобы храниться в памяти.

Примеры

Сопутствующая информация