Обратная константа-Q преобразовывает использующие неустановившиеся системы координат Габора
возвращает обратное постоянное-Q преобразование, xrec
= icqt(cfs
,g
,fshifts
)xrec
, из коэффициентов cfs
. cfs
матрица, массив ячеек или массив структур. g
массив ячеек неустановившегося Габора, постоянные-Q аналитические фильтры раньше получали коэффициенты cfs
. fshifts
вектор из сдвигов интервала частоты для постоянных-Q полосовых фильтров в g
. icqt
принимает по умолчанию, что исходный сигнал был с действительным знаком. Указать на исходный входной сигнал было с комплексным знаком, используйте 'SignalType'
пара "имя-значение". Если вход к cqt
был один сигнал, затем xrec
вектор. Если вход к cqt
был многоканальный сигнал, затем xrec
матрица. cfs
G
, и fshifts
должны быть выходные параметры cqt
.
Теория неустановившегося Габора (NSG) системы координат для адаптивного частотой анализа и эффективные алгоритмы для анализа и синтеза с помощью систем координат NSG происходит из-за Dörfler, Holighaus, Гриля и Веласко [1], [2]. Алгоритмы, используемые в cqt
и icqt
были разработаны Dörfler, Holighaus, Грилем и Веласко и описаны в [1], [2]. В [3], Schörkhuber, Klapuri, Holighaus и Dörfler разрабатывают и обеспечивают, алгоритмы для откорректированного фазой CQT преобразовывают, какие соответствия коэффициенты CQT, которые были бы получены наивной сверткой. Большой Тулбокс Частотно-временного анализа (https://github.com/ltfat) обеспечивает обширный набор алгоритмов для неустановившихся систем координат Габора [4].
[1] Holighaus, N., М. Дерфлер, Г. А. Веласко и Т. Грилл. "Среда для обратимых постоянных-Q преобразований в реальном времени". Транзакции IEEE на Аудио, Речи и Обработке Языка. Издание 21, № 4, 2013, стр 775–785.
[2] Веласко, G. A. Н. Холайос, М. Дерфлер и Т. Грилл. "Создавая обратимое постоянное-Q преобразование с неустановившимися системами координат Габора". В Продолжениях 14-й Международной конференции по вопросам Эффектов Цифрового аудио (DAFx-11). Париж, Франция: 2011.
[3] Schörkhuber, C., А. Клапури, Н. Холайос и М. Дерфлер. "Тулбокс MATLAB для Эффективных Совершенных Преобразований Частоты Времени Реконструкции с Разрешением Логарифмической Частоты". Представленный AES 53-я Международная конференция по вопросам Семантического Аудио. Лондон, Великобритания: 2014.
[4] Průša, Z., П. Л. Сындергэард, Н. Холайос, К. Висмеир и П. Бэлэзс. Большой Тулбокс Частотно-временного анализа 2.0. Звук, Музыка, и Движение, Примечания Лекции в Информатике 2014, стр 419-442.