Многошкальное локальное 1D полиномиальное преобразование
[ возвращает многошкальное локальное полиномиальное 1D преобразование (MLPT) входного сигнала coefs,T,coefsPerLevel,scalingMoments]
= mlpt(x,t)x произведенный в моменты выборки, t. Если x или t содержите NaNs, объединение NaNs в x и t удален прежде, чем получить mlpt.
[ возвращает преобразование для coefs,T,coefsPerLevel,scalingMoments]
= mlpt(x,t,numLevel)numLevel уровни разрешения.
[ универсальная форма использования выборка моментов для coefs,T,coefsPerLevel,scalingMoments]
= mlpt(x)x как моменты времени, если x не содержит NaNs. Если x содержит NaNs, NaNs удалены из x и неоднородные моменты выборки получены из числовых элементов x.
[ задает coefs,T,coefsPerLevel,scalingMoments]
= mlpt(___,Name,Value)mlpt свойства с помощью одного или нескольких Name,Value парные аргументы и любой из предыдущих входных параметров.
Маартен Янсен разработал теоретическую основу многошкального локального полиномиального преобразования (MLPT) и алгоритмов для его эффективного расчета [1][2][3]. MLPT использует поднимающуюся схему, где функция ядра сглаживает коэффициенты прекрасной шкалы с данной полосой пропускания, чтобы получить более грубые коэффициенты разрешения. mlpt функционируйте использует только локальную полиномиальной интерполяцию, но метод, разработанный Янсеном, является более общим и допускает много других типов ядра с корректируемыми полосами пропускания [2].
[1] Янсен, Маартен. “Многошкальное Локальное Сглаживание Полинома в Снятой Пирамиде для Неравномерно расположенных Данных”. Транзакции IEEE на Обработке сигналов 61, № 3 (февраль 2013): 545–55. https://doi.org/10.1109/TSP.2012.2225059.
[2] Янсен, Маартен и Мохамед Амгэр. “Многошкальные Локальные Полиномиальные Разложения Используя Полосы пропускания как Шкалы”. Статистика и Вычисление 27, № 5 (сентябрь 2017): 1383–99. https://doi.org/10.1007/s11222-016-9692-8.
[3] Янсен, Маартен и Патрик Унинккс. Вейвлеты второго поколения и приложения. Лондон ; Нью-Йорк: Спрингер, 2005.