checkLayer

Проверяйте валидность пользовательского слоя

Синтаксис

checkLayer(layer,validInputSize)
checkLayer(layer,validInputSize,'ObservationDimension',dim)

Описание

пример

checkLayer(layer,validInputSize) проверяет валидность пользовательского слоя с помощью сгенерированных данных размеров в validInputSize. Для слоев с одним входом, набор validInputSize к типичному размеру входных данных к слою. Для слоев с несколькими входными параметрами, набор validInputSize к массиву ячеек типичных размеров, где каждый элемент соответствует входу слоя.

пример

checkLayer(layer,validInputSize,'ObservationDimension',dim) задает размерность данных, которые соответствуют наблюдениям. Если вы задаете этот параметр, то функция проверяет слой и на одно наблюдение и на несколько наблюдений.

Примеры

свернуть все

Проверяйте валидность примера пользовательский слой preluLayer.

Задайте пользовательский слой PReLU. Чтобы создать этот слой, сохраните файл preluLayer.m в текущей папке.

Создайте экземпляр слоя и проверяйте, что это - допустимое использование checkLayer. Установите допустимый входной размер на типичный размер одного входа наблюдения к слою. Для одного входа слой ожидает наблюдения за размером h w c, где h, w, и c являются высотой, шириной и количеством каналов предыдущего слоя вывод, соответственно.

Задайте validInputSize как типичный размер входного массива.

layer = preluLayer(20,'prelu');
validInputSize = [5 5 20];
checkLayer(layer,validInputSize)
Skipping multi-observation tests. To enable tests with multiple observations, specify the 'ObservationDimension' option in checkLayer.
For 2-D image data, set 'ObservationDimension' to 4.
For 3-D image data, set 'ObservationDimension' to 5.
For sequence data, set 'ObservationDimension' to 2.
 
Skipping GPU tests. No compatible GPU device found.
 
Running nnet.checklayer.TestCase
.......... ...
Done nnet.checklayer.TestCase
__________

Test Summary:
	 13 Passed, 0 Failed, 0 Incomplete, 11 Skipped.
	 Time elapsed: 1.532 seconds.

Результаты показывают количество переданных, проваленных, и пропущенных тестов. Если вы не задаете опцию 'ObservationsDimension' или не имеете графического процессора, то функция пропускает соответствующие тесты.

Проверяйте несколько наблюдений

Для входа мультинаблюдения слой ожидает массив наблюдений за размером h w c N, где h, w, и c являются высотой, шириной и количеством каналов, соответственно, и N является количеством наблюдений.

Чтобы проверять валидность слоя на несколько наблюдений, задайте типичный размер наблюдения и установите 'ObservationDimension' на 4.

layer = preluLayer(20,'prelu');
validInputSize = [5 5 20];
checkLayer(layer,validInputSize,'ObservationDimension',4)
Skipping GPU tests. No compatible GPU device found.
 
Running nnet.checklayer.TestCase
.......... ........
Done nnet.checklayer.TestCase
__________

Test Summary:
	 18 Passed, 0 Failed, 0 Incomplete, 6 Skipped.
	 Time elapsed: 2.196 seconds.

В этом случае функция не обнаруживает проблем со слоем.

Входные параметры

свернуть все

Пользовательский слой, заданный как объект nnet.layer.Layer, объект nnet.layer.ClassificationLayer или объект nnet.layer.RegressionLayer. Для примера, показывающего, как задать ваш собственный слой, смотрите, Задают Пользовательский Слой Глубокого обучения с Параметрами Learnable.

Допустимые входные размеры слоя, заданного как вектор положительных целых чисел или массив ячеек векторов положительных целых чисел.

  • Для слоев с одним входом задайте validInputSize как вектор целых чисел, соответствующих размерностям входных данных. Например, [5 5 10] соответствует допустимым входным данным размера 5 5 на 10.

  • Для слоев с несколькими входными параметрами задайте validInputSize как массив ячеек векторов, где каждый вектор соответствует входу слоя, и элементы векторов соответствуют размерностям соответствующих входных данных. Например, {[24 24 20],[24 24 10]} соответствует допустимым входным размерам двух входных параметров, где 24 24 20 допустимый входной размер для первого входа, и 24 24 10 допустимый входной размер для второго входа.

Для получения дополнительной информации смотрите Входные Размеры Слоя.

Для больших входных размеров проверки градиента занимают больше времени, чтобы запуститься. Чтобы ускорить тесты, задайте меньший допустимый входной размер.

Пример: [5 5 10]

Пример: {[24 24 20],[24 24 10]}

Типы данных: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | cell

Размерность наблюдения, заданная как положительное целое число.

Размерность наблюдения задает, какая размерность входных данных слоя соответствует наблюдениям. Например, если слой ожидает, что входные данные имеют размер h-by-w-by-c-by-N, где h, w и c соответствуют высоте, ширине и количеству каналов входных данных, соответственно, и N соответствует количеству наблюдений, затем размерность наблюдения равняется 4. Для получения дополнительной информации смотрите Входные Размеры Слоя.

Если вы задаете размерность наблюдения, то функция checkLayer проверяет, что функции уровня являются сгенерированными данными допустимого использования с мини-пакетами размера 1 и 2. Если вы не задаете размерность наблюдения, то функция пропускает соответствующие тесты.

Типы данных: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Больше о

свернуть все

Входные размеры слоя

Для каждого слоя допустимый входной размер и размерность наблюдения зависят от вывода предыдущего слоя.

Промежуточные слои

Для промежуточных слоев (слои типа nnet.layer.Layer), допустимый входной размер и размерность наблюдения зависят от типа ввода данных к слою. Для слоев с одним входом задайте validInputSize как вектор целых чисел, соответствующих размерностям входных данных. Для слоев с несколькими входными параметрами задайте validInputSize как массив ячеек векторов, где каждый вектор соответствует входу слоя, и элементы векторов соответствуют размерностям соответствующих входных данных. Для больших входных размеров проверки градиента занимают больше времени, чтобы запуститься. Чтобы ускорить тесты, задайте меньший допустимый входной размер.

Вход слояВведите размерРазмерность наблюдения
2D изображенияh-by-w-by-c-by-N, где h, w и c соответствуют высоте, ширине, и количеству каналов изображений соответственно и N, является количеством наблюдений.4
3-D изображенияh-by-w-by-D-by-c-by-N, где h, w, D и c соответствуют высоте, ширине, глубине, и количеству каналов 3-D изображений соответственно и N, является количеством наблюдений.5
Векторные последовательностиc-by-N-by-S, где c является количеством функций последовательностей, N, является количеством наблюдений, и S является длиной последовательности.2
2D последовательности изображенийh-by-w-by-c-by-N-by-S, где h, w и c соответствуют высоте, ширине и количеству каналов изображений соответственно, N, является количеством наблюдений, и S является длиной последовательности.4
3-D последовательности изображенийh-by-w-by-d-by-c-by-N-by-S, где h, w, d и c соответствуют высоте, ширине, глубине и количеству каналов 3-D изображений соответственно, N, является количеством наблюдений, и S является длиной последовательности.5

Например, для 2D проблем классификации изображений, устанавливает validInputSize на [h w c], где h, w и c соответствуют высоте, ширине, и количеству каналов изображений, соответственно, и 'ObservationDimension' к 4.,

Выходной слой

Для выходных слоев (слои типа nnet.layer.ClassificationLayer или nnet.layer.RegressionLayer), устанавливает validInputSize на типичный размер одного входного наблюдения Y к слою.

Для проблем классификации допустимый входной размер и размерность наблюдения Y зависят от типа проблемы:

Задача классификацииВведите размерРазмерность наблюдения
2D классификация изображений1 1 K N, где K является количеством классов и N, количество наблюдений.4
3-D классификация изображений1 1 1 K N, где K является количеством классов и N, количество наблюдений.5
Классификация последовательностей к меткеK-by-N, где K является количеством классов и N, является количеством наблюдений.2
Классификация от последовательности к последовательностиK-by-N-by-S, где K является количеством классов, N, является количеством наблюдений, и S является длиной последовательности.2

Например, для 2D проблем классификации изображений, устанавливает validInputSize на [1 1 K], где K является количеством классов и 'ObservationDimension' к 4.

Для проблем регрессии размерности Y также зависят от типа проблемы. Следующая таблица описывает размерности Y.

Задача регрессииВведите размерРазмерность наблюдения
2D регрессия изображений1 1 R N, где R является количеством ответов и N, количество наблюдений.4
2D регрессия От изображения к изображениюh-by-w-by-c-by-N, где h, w и c являются высотой, шириной, и количеством каналов вывода соответственно и N, является количеством наблюдений.4
3-D регрессия изображений1 1 1 R N, где R является количеством ответов и N, количество наблюдений.5
3-D регрессия От изображения к изображениюh-by-w-by-d-by-c-by-N, где h, w, d и c являются высотой, шириной, глубиной, и количеством каналов вывода соответственно и N, является количеством наблюдений.5
Регрессия Sequence-oneR-by-N, где R является количеством ответов и N, является количеством наблюдений.2
Регрессия от последовательности к последовательностиR-by-N-by-S, где R является количеством ответов, N, является количеством наблюдений, и S является длиной последовательности.2

Например, для 2D проблем регрессии изображений, устанавливает validInputSize на [1 1 R], где R является количеством ответов и 'ObservationDimension' к 4.

Алгоритмы

свернуть все

Список тестов

Функция checkLayer проверяет валидность пользовательского слоя путем выполнения серии тестов, описанных в этих таблицах. Для получения дополнительной информации о тестах, используемых checkLayer, смотрите Проверку Пользовательская Валидность Слоя.

Промежуточные слои

Функция checkLayer использует эти тесты, чтобы проверять валидность пользовательских промежуточных слоев (слои типа nnet.layer.Layer).

ТестОписание
methodSignaturesAreCorrectСинтаксисы функций уровня правильно заданы.
predictDoesNotErrorpredict не делает ошибки.
forwardDoesNotError

forward не делает ошибки.

forwardPredictAreConsistentInSize

forward и выходные значения predict, одного размера.

backwardDoesNotErrorbackward не делает ошибки.
backwardIsConsistentInSize

Выходные параметры backward сопоставимы в размере:

  • Производные относительно каждого входа одного размера как соответствующий вход.

  • Производные относительно каждого learnable параметра одного размера как соответствующий learnable параметр.

predictIsConsistentInType

Выходные параметры predict сопоставимы в типе с входными параметрами.

forwardIsConsistentInType

Выходные параметры forward сопоставимы в типе с входными параметрами.

backwardIsConsistentInType

Выходные параметры backward сопоставимы в типе с входными параметрами.

gradientsAreNumericallyCorrectГрадиенты, вычисленные в backward, сопоставимы с числовыми градиентами.

Тесты predictIsConsistentInType, forwardIsConsistentInType и backwardIsConsistentInType также проверяют на совместимость графического процессора. Чтобы выполнить функции уровня на графическом процессоре, функции должны поддержать вводы и выводы типа gpuArray с базовым типом данных single.

Если вы не реализовали forward, то checkLayer не запускает forwardDoesNotError, forwardPredictAreConsistentInSize и тесты forwardIsConsistentInType.

Выходной слой

Функция checkLayer использует эти тесты, чтобы проверять валидность пользовательских выходных слоев (слои типа nnet.layer.ClassificationLayer или nnet.layer.RegressionLayer).

ТестОписание
forwardLossDoesNotErrorforwardLoss не делает ошибки.
backwardLossDoesNotErrorbackwardLoss не делает ошибки.
forwardLossIsScalarВывод forwardLoss является скаляром.
backwardLossIsConsistentInSizeВывод backwardLoss сопоставим в размере: dLdY одного размера как прогнозы Y.
forwardLossIsConsistentInType

Вывод forwardLoss сопоставим в типе: loss является тем же типом как прогнозы Y.

backwardLossIsConsistentInType

Вывод backwardLoss сопоставим в типе: dLdY должен быть тем же типом как прогнозы Y.

gradientsAreNumericallyCorrectГрадиенты, вычисленные в backwardLoss, численно правильны.

forwardLossIsConsistentInType и тесты backwardLossIsConsistentInType также проверяют на совместимость графического процессора. Чтобы выполнить функции уровня на графическом процессоре, функции должны поддержать вводы и выводы типа gpuArray с базовым типом данных single.

Введенный в R2018a