recursiveLS

Создайте Системный объект для онлайновой оценки параметра с помощью рекурсивного алгоритма наименьших квадратов

Используйте команду recursiveLS для оценки параметра с данными реального времени. Если все данные, необходимые для оценки, доступны целиком, и вы оцениваете независимую от времени модель, используете mldivide, \.

Синтаксис

obj = recursiveLS
obj = recursiveLS(Np)
obj = recursiveLS(Np,theta0)
obj = recursiveLS(___,Name,Value)

Описание

obj = recursiveLS создает Систему object™ для онлайновой оценки параметра одной выходной системы по умолчанию, которая линейна в предполагаемых параметрах. Такая система может быть представлена как:

y (t) = H (t) θ (t) +e (t).

Здесь, y является вывод, θ параметры, H регрессоры, и e является бело-шумовым воздействием. Система по умолчанию имеет один параметр с начальным значением параметров 1.

После создания объекта используйте команду step, чтобы обновить оценки параметра модели с помощью рекурсивных алгоритмов наименьших квадратов и данных реального времени. Также можно вызвать объект непосредственно. Для получения дополнительной информации смотрите Советы.

obj = recursiveLS(Np) также задает количество параметров, которые будут оценены.

obj = recursiveLS(Np,theta0) также задает количество параметров и начальные значения параметров.

obj = recursiveLS(___,Name,Value) задает дополнительные атрибуты системы и рекурсивного алгоритма оценки с помощью одного или нескольких аргументов пары Name,Value.

Описание объекта

recursiveLS создает Системный объект для онлайновой оценки параметра одной выходной системы, которая линейна в ее параметрах.

Системный объект является специализированным объектом MATLAB®, специально разработанным для реализации и симуляции динамических систем с входными параметрами то изменение в зависимости от времени. Системные объекты используют внутренние состояния, чтобы сохранить прошлое поведение, которое используется на следующем вычислительном шаге.

После того, как вы создадите Системный объект, вы используете команды, чтобы обработать данные или получить информацию из или об объекте. Системные объекты используют минимум двух команд, чтобы обработать данные — конструктор, чтобы создать объект и команду step, чтобы обновить параметры объекта с помощью данных реального времени. Это разделение объявления от выполнения позволяет вам создать несколько, персистентные, допускающие повторное использование объекты, каждого с различными настройками.

Можно использовать следующие команды с онлайновыми Системными объектами оценки в System Identification Toolbox™:

КомандаОписание
step

Обновите оценки параметра модели с помощью рекурсивных алгоритмов оценки и данных реального времени.

step помещает объект в заблокированное состояние. В заблокированном состоянии вы не можете изменить ненастраиваемые свойства или ввести спецификации, такие как порядок модели, тип данных или алгоритм оценки. Во время выполнения можно только изменить настраиваемые свойства.

release

Разблокируйте Системный объект. Используйте эту команду, чтобы позволить установить ненастраиваемых параметров.

reset

Сбросьте внутренние состояния заблокированного Системного объекта к начальным значениям и оставьте объект заблокированным.

clone

Создайте другой Системный объект с теми же значениями свойства объекта.

Не создавайте дополнительные объекты с помощью синтаксиса obj2 = obj. Любые изменения, внесенные в свойства нового объекта, создали этот путь (obj2), также изменяют свойства исходного объекта (obj).

isLocked

Запросите заблокированное состояние для входных атрибутов и ненастраиваемых свойств Системного объекта.

Используйте команду recursiveLS, чтобы создать онлайновый Системный объект оценки. Затем оцените системные параметры (theta) и выведите использование команды step с регрессорами и входящими выходными данными, H и y.

[theta,EstimatedOutput] = step(obj,y,H)

Для свойств объектов recursiveLS смотрите Свойства.

Примеры

свернуть все

obj = recursiveLS
obj = 
  recursiveLS with properties:

            NumberOfParameters: 1
                    Parameters: []
             InitialParameters: 1
           ParameterCovariance: []
    InitialParameterCovariance: 10000
              EstimationMethod: 'ForgettingFactor'
              ForgettingFactor: 1
              EnableAdaptation: true
                       History: 'Infinite'
               InputProcessing: 'Sample-based'
                      DataType: 'double'

Система имеет два параметра и представлена как:

y(t)=a1u(t)+a2u(t-1)

Здесь,

  • u и y входные и выходные данные в реальном времени, соответственно.

  • u(t) и u(t-1) регрессоры, H, системы.

  • a1 и a2 параметры, theta, системы.

Создайте Системный объект для онлайновой оценки с помощью рекурсивного алгоритма наименьших квадратов.

obj = recursiveLS(2);

Загрузите данные об оценке, которые для этого примера являются статическим набором данных.

load iddata3
input = z3.u;
output = z3.y;

Создайте переменную, чтобы сохранить u(t-1). Эта переменная обновляется на каждом временном шаге.

oldInput = 0;

Оцените параметры и выведите использование step и данные ввода - вывода, поддержав текущую пару регрессора в H. Вызовите функцию step неявно путем вызова системного объекта obj с входными параметрами.

for i = 1:numel(input)
    H = [input(i) oldInput];
    [theta, EstimatedOutput] = obj(output(i),H);
    estimatedOut(i)= EstimatedOutput;
    theta_est(i,:) = theta;
    oldInput = input(i);
end

Постройте измеренные и предполагаемые выходные данные.

numSample = 1:numel(input);
plot(numSample,output,'b',numSample,estimatedOut,'r--');
legend('Measured Output','Estimated Output');

Постройте параметры.

plot(numSample,theta_est(:,1),numSample,theta_est(:,2))
title('Parameter Estimates for Recursive Least Squares Estimation')
legend("theta1","theta2")

Просмотрите итоговые оценки.

theta_final = theta
theta_final = 2×1

   -1.5322
   -0.0235

Используйте основанные на кадре сигналы с командой recursiveLS. Интерфейсы машины часто обеспечивают данные о датчике в кадрах, содержащих несколько выборок, а не в отдельных выборках. Объект recursiveLS принимает эти кадры непосредственно, когда вы устанавливаете InputProcessing на Frame-based.

Объект использует те же алгоритмы оценки для основанной на выборке и основанной на кадре входной обработки. Результаты оценки идентичны. Существуют некоторые специальные замечания, однако, для работы с основанными на кадре входными параметрами.

Этим примером является основанная на кадре версия основанного на выборке примера recursiveLS в Оценочных Параметрах Системы Используя Рекурсивный Алгоритм Наименьших квадратов.

Система имеет два параметра и представлена как:

y(t)=a1u(t)+a2u(t-1)

Здесь,

  • u и y входные и выходные данные в реальном времени, соответственно.

  • u(t) и u(t-1) регрессоры, H, системы.

  • a1 и a2 параметры,θ, из системы.

Создайте Системный объект для онлайновой оценки с помощью рекурсивного алгоритма наименьших квадратов.

obj_f = recursiveLS(2,'InputProcessing','Frame-Based');

Загрузите данные, которые содержат сигналы временных рядов ввода и вывода. Каждый сигнал состоит из 30 кадров, и каждый кадр содержит десять отдельных выборок времени.

load iddata3_frames input_sig_frame output_sig_frame
input = input_sig_frame.data;
output = output_sig_frame.data;
numframes = size(input,3)
numframes = 30
mframe = size(input,1)
mframe = 10

Инициализируйте кадр регрессора, который для данного кадра, имеет форму

Hf=[u1u0u2u1u10u9],

где новая точка в кадре u10.

Hframe = zeros(10,2);

Для этого примера первого порядка кадр регрессора включает одну точку от предыдущего кадра. Инициализируйте эту точку.

oldInput = 0;

Оцените параметры и выведите использование step и данные ввода - вывода, поддержав текущий кадр регрессора в Hframe.

  • Массивы ввода и вывода имеют три измерения. Третья размерность является индексом кадра, и первые две размерности представляют содержимое отдельных кадров.

  • Используйте функцию circshift, чтобы заполнить второй столбец Hframe с прошлым значением input для каждой пары регрессора путем сдвига входного вектора одним положением.

  • Заполните элемент Hframe , содержащий самое старое значение, Hframe(1,2), со значением регрессора, сохраненным от предыдущего кадра.

  • Вызовите функцию step неявно путем вызова системного объекта obj с входными параметрами. Функция step совместима с кадрами, таким образом, никакая функция цикла в кадре не необходима.

  • Сохраните новое входное значение, чтобы использовать для следующего вычисления кадра.

EstimatedOutput = zeros(10,1,30);
theta = zeros(2,30);
for i = 1:numframes
    Hframe = [input(:,:,i) circshift(input(:,:,i),1)];
    Hframe(1,2) = oldInput;
    [theta(:,i), EstimatedOutput(:,:,i)] = obj_f(output(:,:,i),Hframe);
    oldInput = input(10,:,i);
end

Постройте параметры.

theta1 = theta(1,:);
theta2 = theta(2,:);
iframe = 1:numframes;
plot(iframe,theta1,iframe,theta2)
title('Frame-Based Recursive Least Squares Estimation')
legend('theta1','theta2','location','best')

Просмотрите итоговые оценки.

theta_final = theta(:,numframes)
theta_final = 2×1

   -1.5322
   -0.0235

Итоговые оценки идентичны основанной на выборке оценке.

Создайте Системный объект для онлайновой оценки параметра с помощью рекурсивного алгоритма наименьших квадратов системы с двумя параметрами и известными начальными значениями параметров.

obj = recursiveLS(2,[0.8 1],'InitialParameterCovariance',0.1);

InitialParameterCovariance представляет неуверенность в вашем предположении для начальных параметров. Как правило, InitialParameterCovariance по умолчанию (10000) является слишком большим относительно значений параметров. Это приводит к исходным предположениям, высказанным меньше важности во время оценки. Если вы уверены в начальных предположениях параметра, задаете меньшую начальную ковариацию параметра.

Входные параметры

свернуть все

Количество параметров в системе, заданной как положительное целое число.

Начальное значение параметров, заданных как одно из следующего:

  • Скаляр — Все параметры имеют то же начальное значение.

  • Вектор действительных значений длины Npi th параметр имеет начальное значение theta0(i).

Начальным значением по умолчанию для всех параметров является 1.

Примечание

Если начальные значения параметров намного меньше, чем InitialParameterCovariance, этим начальным значениям дают меньше важности во время оценки. Задайте меньшую начальную ковариацию параметра, если у вас есть высокая уверенность в начальных значениях параметров. Этот оператор применяется только для оценки бесконечной истории. Оценка конечной истории не использует InitialParameterCovariance.

Аргументы в виде пар имя-значение

Укажите необязательные аргументы в виде пар ""имя, значение"", разделенных запятыми. Имя (Name) — это имя аргумента, а значение (Value) — соответствующее значение. Name должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN.

Используйте аргументы Name,Value, чтобы задать перезаписываемые свойства Системного объекта recursiveLS во время создания объекта. Например, obj = recursiveLS(2,'EstimationMethod','Gradient') создает Системный объект, чтобы оценить системные параметры с помощью 'Gradient' рекурсивный алгоритм оценки.

Свойства

Свойства Системного объекта recursiveLS состоят из и перезаписываемых свойств только для чтения. Перезаписываемые свойства являются настраиваемыми и ненастраиваемыми свойствами. Ненастраиваемые свойства не могут быть изменены, когда объект заблокирован, то есть, после того, как вы используете команду step.

Используйте аргументы Name,Value, чтобы задать перезаписываемые свойства объектов recursiveLS во время создания объекта. После создания объекта используйте запись через точку, чтобы изменить настраиваемые свойства.

obj = recursiveLS;
obj.ForgettingFactor = 0.99;

NumberOfParameters

Количество параметров, которые будут оценены, возвращенные как положительное целое число.

NumberOfParameters является свойством только для чтения. Если Np задан во время объектной конструкции, NumberOfParameters принимает значение, присвоенное Np.

Значение по умолчанию: 1

Parameters

Предполагаемые параметры, возвращенные как вектор-столбец действительных значений.

Parameters является свойством только для чтения и первоначально пуст после того, как вы создадите объект. Это заполняется после того, как вы будете использовать команду step для онлайновой оценки параметра.

InitialParameters

Начальные значения параметров, заданных как одно из следующего:

  • Скаляр — Все параметры имеют то же начальное значение.

  • Вектор действительных значений длины Npi th параметр имеет начальное значение InitialParameters(i).

Если начальные значения параметров намного меньше, чем InitialParameterCovariance, этим начальным значениям дают меньше важности во время оценки. Задайте меньшую начальную ковариацию параметра, если у вас есть высокая уверенность в начальных значениях параметров. Этот оператор применяется только для оценки бесконечной истории. Оценка конечной истории не использует InitialParameterCovariance.

InitialParameters является настраиваемым свойством. Можно изменить InitialParameters, когда объект находится в заблокированном состоянии.

Значение по умолчанию: 1

InitialOutputs

Начальные значения выходных параметров буферизуют по оценке конечной истории, заданной как 0 или как W-by-1 вектор, где W является длиной окна.

Свойство InitialOutputs обеспечивает средние значения управления начальным поведением алгоритма.

Когда InitialOutputs установлен в 0, объект заполняет буфер с нулями.

Если начальный буфер установлен в 0 или не содержит достаточно информации, вы видите предупреждающее сообщение во время начальной фазы вашей оценки. Предупреждение должно очиститься после нескольких циклов. Количество циклов, которые это берет для достаточной информации, которая будет буферизована, зависит от порядка ваших полиномов и ваших входных задержек. Если предупреждение сохраняется, необходимо оценить содержимое сигналов.

Задайте InitialOutputs только, когда History будет Finite.

InitialOutputs является настраиваемым свойством. Можно изменить InitialOutputs, когда объект находится в заблокированном состоянии.

Значение по умолчанию: 0

InitialRegressors

Начальные значения регрессоров буферизуют по оценке конечной истории, заданной как 0 или как W-by-Np матрица, где W является длиной окна, и Np является количеством параметров.

Свойство InitialRegressors обеспечивает средние значения управления начальным поведением алгоритма.

Когда InitialRegressors установлен в 0, объект заполняет буфер с нулями.

Если начальный буфер установлен в 0 или не содержит достаточно информации, вы видите предупреждающее сообщение во время начальной фазы вашей оценки. Предупреждение должно очиститься после нескольких циклов. Количество циклов, которые это берет для достаточной информации, которая будет буферизована, зависит от порядка ваших полиномов и ваших входных задержек. Если предупреждение сохраняется, необходимо оценить содержимое сигналов.

Задайте InitialRegressors только, когда History будет Finite.

InitialRegressors является настраиваемым свойством. Можно изменить InitialRegressors, когда объект находится в заблокированном состоянии.

Значение по умолчанию: 0

ParameterCovariance

Предполагаемая ковариация P параметров, возвращенных как N-by-N симметричная положительно-определенная матрица. N является количеством параметров, которые будут оценены. Программное обеспечение вычисляет P, принимающий, что невязки (различие между предполагаемыми и измеренными выходными параметрами) являются белым шумом, и отклонение этих невязок равняется 1.

ParameterCovariance применим только, когда EstimationMethod является 'ForgettingFactor' или 'KalmanFilter' или когда History является Finite.

Интерпретация P зависит от ваших настроек для свойств History и EstimationMethod.

  • Если History является Infinite, то ваши результаты выбора EstimationMethod в одном из следующего:

    • 'ForgettingFactor'P (R2 /2) приблизительно равен ковариационной матрице предполагаемых параметров, где R2 является истинным отклонением невязок.

    • 'KalmanFilter'R2 P является ковариационной матрицей предполагаемых параметров, и R1/R2 является ковариационной матрицей изменений параметра. Здесь, R1 является ковариационной матрицей, которую вы задаете в ProcessNoiseCovariance.

  • Если History является Finite (оценка раздвижного окна) — R2 P является ковариацией предполагаемых параметров. Алгоритм раздвижного окна не использует эту ковариацию в процессе оценки параметра. Однако алгоритм действительно вычисляет ковариацию для вывода так, чтобы можно было использовать его для статистической оценки.

ParameterCovariance является свойством только для чтения и первоначально пуст после того, как вы создадите объект. Это заполняется после того, как вы будете использовать команду step для онлайновой оценки параметра.

InitialParameterCovariance

Ковариация начальных оценок параметра, заданных как одно из следующего:

  • Действительная положительная скалярная величина, α — Ковариационной матрицей является N-by-N диагональная матрица с α как диагональные элементы. N является количеством параметров, которые будут оценены.

  • Вектором действительных положительных скалярных величин, [α 1..., α N] — Ковариационная матрица является N-by-N диагональная матрица, с [α 1..., α N] как диагональные элементы.

  • N-by-N симметричная положительно-определенная матрица.

InitialParameterCovariance представляет неуверенность в начальных оценках параметра. Для больших значений InitialParameterCovariance меньше важности помещается в начальные значения параметров и больше в результаты измерений в течение начала оценки с помощью step.

Используйте только, когда EstimationMethod будет 'ForgettingFactor' или 'KalmanFilter'.

InitialParameterCovariance является настраиваемым свойством. Можно изменить его, когда объект находится в заблокированном состоянии.

Значение по умолчанию: 10000

EstimationMethod

Рекурсивный алгоритм оценки методом наименьших квадратов, используемый для онлайновой оценки параметров модели, заданных как одно из следующих значений:

  • 'ForgettingFactor' — Алгоритм используется для оценки параметра

  • 'KalmanFilter' — Алгоритм используется для оценки параметра

  • 'NormalizedGradient' — Алгоритм используется для оценки параметра

  • градиент Ненормированный алгоритм градиента используется для оценки параметра

Упущение фактора и алгоритмов Фильтра Калмана более в вычислительном отношении интенсивно, чем градиент и ненормированные градиентные методы. Однако у них есть лучшие свойства сходимости. Для получения информации об этих алгоритмах смотрите Рекурсивные алгоритмы для Онлайновой Оценки Параметра.

Эти методы все использование, бесконечная история данных, и доступна только, когда History является 'Infinite'.

EstimationMethod является ненастраиваемым свойством. Вы не можете изменить его во время выполнения, то есть, после того, как объект будет заблокирован с помощью команды step.

Значение по умолчанию: Forgetting Factor

ForgettingFactor

Забывая фактор, λ, важный для оценки параметра, заданной как скаляр в области значений (0,1].

Предположим, что система остается приблизительно постоянной по выборкам T0. Можно выбрать λ, таким образом что:

T0=11λ

  • Установка λ = 1 не соответствует “никакому упущению” и оценке постоянных коэффициентов.

  • Установка λ <1 подразумевает, что прошлые измерения являются менее значительными для оценки параметра и могут быть “забыты”. Установите λ <1 оценивать изменяющиеся во времени коэффициенты.

Типичный выбор λ находится в области значений [0.98 0.995].

Используйте только, когда EstimationMethod будет 'ForgettingFactor'.

ForgettingFactor является настраиваемым свойством. Можно изменить его, когда объект находится в заблокированном состоянии.

Значение по умолчанию: 1

EnableAdapation

Включите или отключите оценку параметра, заданную как одно из следующего:

  • true или 1 — Команда step оценивает значения параметров для того временного шага и обновляет значения параметров.

  • false или 0 — Команда step не обновляет параметры для того временного шага и вместо этого выводит последнюю ориентировочную стоимость. Можно использовать эту опцию, когда система переходит к режиму, где значения параметров не меняются в зависимости от времени.

    Примечание

    Если вы устанавливаете EnableAdapation на false, необходимо все еще выполнить команду step. Не пропускайте step, чтобы сохранить значения параметров постоянными, потому что оценка параметра зависит от текущих и прошлых измерений ввода-вывода. step гарантирует, что прошлые данные о вводе-выводе хранятся, даже когда это не обновляет параметры.

EnableAdapation является настраиваемым свойством. Можно изменить его, когда объект находится в заблокированном состоянии.

Значение по умолчанию: true

DataType

Точность с плавающей точкой параметров, заданных как одно из следующих значений:

  • 'double' Плавающая точка двойной точности

  • единственный Плавающая точка с одинарной точностью

Установка DataType к 'single' сохраняет память, но приводит к потере точности. Задайте DataType на основе точности, требуемой целевым процессором, где вы развернете сгенерированный код.

DataType является ненастраиваемым свойством. Это может только быть установлено во время объектной конструкции с помощью аргументов Name,Value и не может быть изменено позже.

Значение по умолчанию: 'double'

ProcessNoiseCovariance

Ковариационная матрица изменений параметра, заданных как одно из следующего:

  • Действительный неотрицательный скаляр, α — Ковариационной матрицей является N-by-N диагональная матрица с α как диагональные элементы.

  • Вектором действительных неотрицательных скаляров, [α 1..., α N] — Ковариационная матрица является N-by-N диагональная матрица, с [α 1..., α N] как диагональные элементы.

  • N-by-N симметричная положительная полуопределенная матрица.

N является количеством параметров, которые будут оценены.

ProcessNoiseCovariance применим, когда EstimationMethod является 'KalmanFilter'.

Алгоритм фильтра Калмана обрабатывает параметры как состояния динамической системы и оценивает эти параметры с помощью Фильтра Калмана. ProcessNoiseCovariance является ковариацией шума процесса, действующего на эти параметры. Нулевые значения в шумовой ковариационной матрице соответствуют оценке постоянных коэффициентов. Значения, больше, чем 0, соответствуют изменяющимся во времени параметрам. Используйте большие значения для того, чтобы быстро изменить параметры. Однако большие значения приводят к более шумным оценкам параметра.

ProcessNoiseCovariance является настраиваемым свойством. Можно изменить его, когда объект находится в заблокированном состоянии.

Значение по умолчанию: 0.1

AdaptationGain

Усиление адаптации, γ, использовало в градиенте рекурсивные алгоритмы оценки, заданные как положительная скалярная величина.

AdaptationGain применим, когда EstimationMethod является 'Gradient' или 'NormalizedGradient'.

Задайте большое значение для AdaptationGain, когда ваши измерения будут иметь высокое отношение сигнал-шум.

AdaptationGain является настраиваемым свойством. Можно изменить его, когда объект находится в заблокированном состоянии.

Значение по умолчанию: 1

NormalizationBias

Сместите в масштабировании усиления адаптации, используемом в методе 'NormalizedGradient', заданном как неотрицательный скаляр.

NormalizationBias применим, когда EstimationMethod является 'NormalizedGradient'.

Нормированный алгоритм градиента делит усиление адаптации на каждом шаге квадратом 2D нормы вектора градиента. Если градиент близко к нулю, это может вызвать скачки в предполагаемых параметрах. NormalizationBias является термином, введенным в знаменателе, чтобы предотвратить эти скачки. Увеличьте NormalizationBias, если вы наблюдаете скачки в предполагаемых параметрах.

NormalizationBias является настраиваемым свойством. Можно изменить его, когда объект находится в заблокированном состоянии.

Значение по умолчанию: eps

History

Определение типа истории данных, какой тип рекурсивного алгоритма вы используете, заданный как:

  • 'Infinite' — Используйте алгоритм, который стремится минимизировать ошибку между наблюдаемыми и предсказанными выходными сигналами, навсегда продвигается с начала симуляции.

  • 'Finite' — Используйте алгоритм, который стремится минимизировать ошибку между наблюдаемыми и предсказанными выходными сигналами для конечного числа прошлых временных шагов.

Алгоритмы с бесконечной историей стремятся производить оценки параметра, которые объясняют все данные начиная с запуска симуляции. Эти алгоритмы все еще используют установленную сумму памяти, которая не растет в зависимости от времени. Объект предоставляет несколько алгоритмов типа History 'Infinite'. Определение этой опции активирует свойство EstimationMethod, с которым вы задаете алгоритм.

Алгоритмы с конечной историей стремятся производить оценки параметра, которые объясняют только конечное число прошлых выборок данных. Этот метод также называется оценкой sliding-window. Объект предоставляет один алгоритм типа 'Finite'. Определение этой опции активирует свойство WindowLength, это измеряет окно.

Для получения дополнительной информации о рекурсивных методах оценки смотрите Рекурсивные алгоритмы для Онлайновой Оценки Параметра.

History является ненастраиваемым свойством. Это может быть установлено только во время объектной конструкции с помощью аргументов Name,Value и не может быть изменено позже.

Значение по умолчанию: 'Infinite'

WindowLength

Размер окна, определяющий количество выборок времени, чтобы использовать для метода оценки раздвижного окна, заданного как положительное целое число. Задайте WindowLength только, когда History будет Finite.

Выберите размер окна, который балансирует производительность оценки с нагрузки памяти и вычислительного. Измеряющие факторы включают номер и отклонение времени параметров в вашей модели. Всегда задавайте Window Length в выборках, даже если вы используете основанную на кадре входную обработку.

WindowLength должен быть больше, чем или равным количеству предполагаемых параметров.

Подходящая длина окна независима от того, используете ли вы основанную на выборке или основанную на кадре входную обработку (см. InputProcessing). Однако при использовании основанной на кадре обработки, ваша длина окна должна быть больше, чем или равной количеству выборок (временные шаги), содержавшиеся в кадре.

WindowLength является ненастраиваемым свойством. Это может быть установлено только во время объектной конструкции с помощью аргументов Name,Value и не может быть изменено позже.

Значение по умолчанию: 200

InputProcessing

Опция для основанной на выборке или основанной на кадре входной обработки, заданной как вектор символов или строка.

  • Обработка Sample-based работает с сигналами, передал одну выборку потоком за один раз.

  • Обработка Frame-based работает с сигналами, содержащими выборки от нескольких временных шагов. Много датчиков машины соединяют интерфейсом с пакетом несколько выборок и передачи эти выборки вместе в кадрах. обработка Frame-based позволяет вам вводить эти данные непосредственно, не имея необходимость сначала распаковывать его.

Ваша спецификация InputProcessing влияет на размерности для сигналов ввода и вывода при использовании команды step:

[theta,EstimatedOutput] = step(obj,y,H)

  • Sample-based

    • y и EstimatedOutput являются скалярами.

    • H является 1 Np вектором, где Np является количеством параметров.

    • Frame-based с выборками M на кадр

      • y и EstimatedOutput является M-by-1 векторы.

      • H является M-by-Np матрица.

InputProcessing является ненастраиваемым свойством. Это может быть установлено только во время объектной конструкции с помощью аргументов Name,Value и не может быть изменено позже.

Значение по умолчанию: 'Sample-based'

Выходные аргументы

свернуть все

Системный объект для онлайновой оценки параметра, возвращенной как Системный объект recursiveLS. Используйте команду step, чтобы оценить параметры системы. Можно затем получить доступ к предполагаемым параметрам и ковариации параметра с помощью записи через точку. Например, введите obj.Parameters, чтобы просмотреть предполагаемые параметры.

Советы

  • Начиная в R2016b, вместо того, чтобы использовать команду step, чтобы обновить оценки параметра модели, можно вызвать Системный объект с входными параметрами, как будто это была функция. Например, [theta,EstimatedOutput] = step(obj,y,H) и [theta,EstimatedOutput] = obj(y,H) выполняют эквивалентные операции.

Расширенные возможности

Введенный в R2015b

Для просмотра документации необходимо авторизоваться на сайте