Опция установлена для ssest
opt = ssestOptions
opt = ssestOptions(Name,Value)
создает набор опции по умолчанию для opt
= ssestOptionsssest
.
создает набор опции с опциями, заданными одним или несколькими аргументами пары opt
= ssestOptions(Name,Value
)Name,Value
.
Укажите необязательные аргументы в виде пар ""имя, значение"", разделенных запятыми.
Имя (Name) — это имя аргумента, а значение (Value) — соответствующее значение.
Name
должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN.
'InitializeMethod'
— Алгоритм раньше инициализировал параметры пространства состояний'auto'
(значение по умолчанию) | 'n4sid'
| 'lsrf'
Алгоритм раньше инициализировал значения параметров пространства состояний для ssest
, заданного как одно из следующих значений:
'auto'
ssest
выбирает автоматически:
lsrf
, если системой является не-MIMO, данные, является частотным диапазоном, и параметры пространства состояний с действительным знаком.
n4sid
в противном случае (временной интервал, MIMO, или с параметрами пространства состояний с комплексным знаком).
'n4sid'
— подход оценки пространства состояний Подпространства — может использоваться со всеми системами (см. n4sid
).
'lsrf'
— рациональная функция Наименьших квадратов основанный на оценке подход [7] (см., что Непрерывно-разовая Оценка Передаточной функции Использует Непрерывно-разовые Данные Частотного диапазона) — может обеспечить результаты более высокой точности для систем частотного диапазона не-MIMO с параметрами пространства состояний с действительным знаком, но не может использоваться ни для каких других систем (временной интервал, MIMO, или с параметрами пространства состояний с комплексным знаком).
'InitialState'
— Обработка начальных состояний'auto'
(значение по умолчанию) | 'zero'
| 'estimate'
| 'backcast'
| вектор | параметрический начальный объект условия (x0obj
)Обработка начальных состояний во время оценки, заданной как одно из следующих значений:
'zero'
— Начальное состояние обнуляется.
'estimate'
— Начальное состояние обработано как независимый параметр оценки.
'backcast'
— Начальное состояние оценивается с помощью лучшего метода наименьших квадратов.
'auto'
ssest
выбирает метод обработки начального состояния, на основе данных об оценке. Возможными методами обработки начального состояния является 'zero'
, 'estimate'
и 'backcast'
.
Вектор удваивается — Задают вектор-столбец длины Nx, где Nx является количеством состояний. Для данных мультиэксперимента задайте матрицу со столбцами Ne, где Ne является количеством экспериментов. Заданные значения обработаны как фиксированные значения во время процесса оценки.
Параметрический начальный объект условия (x0obj
) — Задает начальные условия при помощи idpar
, чтобы создать параметрический начальный объект условия. Можно задать минимальные/максимальные границы и зафиксировать значения определенных состояний с помощью параметрического начального объекта условия. Свободные входы x0obj
оцениваются вместе с параметрами модели idss
.
Используйте эту опцию только для моделей в пространстве состояний дискретного времени.
'N4Weight'
— Weighting используется для сингулярного разложения алгоритмом N4SID'auto'
(значение по умолчанию) | 'MOESP'
| 'CVA'
| 'SSARX'
Схема Weighting, используемая для сингулярного разложения алгоритмом N4SID, заданным как одно из следующих значений:
'MOESP'
— Использует алгоритм MOESP Verhaegen [2].
'CVA'
— Использует канонический переменный алгоритм Larimore [1].
'SSARX'
— Метод идентификации подпространства, который использует ARX основанный на оценке алгоритм, чтобы вычислить взвешивание.
Определение этой опции позволяет объективные оценки при использовании данных, которые собраны в операции с обратной связью. Для получения дополнительной информации об алгоритме, см. [6].
'auto'
Функция оценки выбирает между MOESP и алгоритмами CVA.
'N4Horizon'
— Вперед - и горизонты обратного прогноза используются алгоритмом N4SID
'auto'
(значение по умолчанию) | векторный [r sy su]
| k
-by-3 матрицаПередайте и обратные горизонты прогноза, используемые алгоритмом N4SID, заданным как одно из следующих значений:
Вектор - строка с тремя элементами — [r sy su]
, где r
является максимальным прямым горизонтом прогноза. Алгоритм использует до r
неродной вперед предикторы. sy
является количеством мимо выходных параметров, и su
является количеством прошлых входных параметров, которые используются для прогнозов. Смотрите страницы 209 и 210 в [4] для получения дополнительной информации. Эти числа могут иметь существенное влияние на качество получившейся модели, и нет никаких простых правил для выбора их. Создание 'N4Horizon'
, k
-by-3 матрица означает, что каждую строку 'N4Horizon'
пробуют, и значение, которое дает лучшее (прогноз), подгонка к данным выбрана. k
является количеством предположений комбинаций [r sy su]
. Если вы задаете N4Horizon как отдельный столбец, r = sy = su
используется.
'auto'
Программное обеспечение использует Критерий информации о Akaike (AIC) для выбора sy
и su
.
'Focus'
— Ошибка, которая будет минимизирована'prediction'
(значение по умолчанию) | 'simulation'
Ошибка, которая будет минимизирована в функции потерь во время оценки, заданной как пара, разделенная запятой, состоящая из 'Focus'
и одно из следующих значений:
Предсказание
Один шаг вперед ошибка прогноза между измеренными и предсказанными выходными параметрами минимизирован во время оценки. В результате оценка фокусируется на создании хорошей модели предиктора.
'simulation'
— Ошибка симуляции между измеренными и моделируемыми выходными параметрами минимизирована во время оценки. В результате оценка фокусируется на создании подходящего варианта для симуляции образцового ответа с текущими входными параметрами.
Опция Focus
может быть интерпретирована, когда взвешивание просачивается функция потерь. Для получения дополнительной информации смотрите Функцию потерь и Образцовые Метрики качества.
'WeightingFilter'
— Взвешивание предварительного фильтра[]
(значение по умолчанию) | вектор | матрица | массив ячеек | линейная системаВзвешивание предварительного фильтра применилось к функции потерь, которая будет минимизирована во время оценки. Чтобы понять эффект WeightingFilter
на функции потерь, смотрите Функцию потерь и Образцовые Метрики качества.
Задайте WeightingFilter
как одно из следующих значений:
[]
— Никакой предварительный фильтр взвешивания не используется.
Полосы пропускания — Задают вектор - строку или матрицу, содержащую значения частоты, которые задают желаемые полосы пропускания. Вы выбираете диапазон частот, где подгонка между предполагаемой моделью и данными об оценке оптимизирована. Например, [wl,wh]
, где wl
и wh
представляют нижние и верхние пределы полосы пропускания. Для матрицы с несколькими строками, задающими полосы пропускания частоты, [w1l,w1h;w2l,w2h;w3l,w3h;...]
, алгоритм оценки использует объединение частотных диапазонов, чтобы задать полосу пропускания оценки.
Полосы пропускания выражаются в rad/TimeUnit
для данных временного интервала и в FrequencyUnit
для данных частотного диапазона, где TimeUnit
и FrequencyUnit
являются временем и единицами частоты данных об оценке.
Фильтр SISO — Задает линейный фильтр одного входа одного вывода (SISO) одним из следующих способов:
Модель SISO LTI
Формат {A,B,C,D}
, который задает матрицы пространства состояний фильтра с тем же шагом расчета как данные об оценке.
Формат {numerator,denominator}
, который задает числитель и знаменатель фильтра как передаточная функция с тем же шагом расчета как данные об оценке.
Эта опция вычисляет функцию взвешивания как продукт фильтра и входного спектра, чтобы оценить передаточную функцию.
Взвешивание вектора — Применимый для данных частотного диапазона только. Задайте вектор-столбец весов. Этот вектор должен иметь ту же длину как вектор частоты набора данных, Data.Frequency
. Каждый ответ ввода и вывода в данных умножается на соответствующий вес на той частоте.
'invsqrt'
— Применимый для данных частотного диапазона только, с набором InitializeMethod
к 'lsrf'
только. Использование как фильтр взвешивания, где G (ω) является комплексными данными частотной характеристики. Используйте эту опцию для получения относительно низкой амплитудной динамики в данных.
inv
Применимый для данных частотного диапазона только, с набором InitializeMethod
к 'lsrf'
только. Использование как фильтр взвешивания. Так же к 'invsqrt'
, эта опция получает относительно динамику низкой амплитуды в данных. Используйте его, когда взвешивание 'invsqrt'
производит оценку, которая пропускает динамику в областях низкой амплитуды. 'inv'
более чувствителен к шуму, чем 'invsqrt'
.
'EnforceStability'
— Управляйте, осуществить ли устойчивость моделиfalse
(значение по умолчанию) | true
Управляйте, осуществить ли устойчивость предполагаемой модели, заданной как пара, разделенная запятой, состоящая из 'EnforceStability'
и или true
или false
.
Типы данных: логический
'EstimateCovariance'
— Управляйте, сгенерировать ли данные о ковариации параметраtrue
(значение по умолчанию) | false
Средства управления, сгенерированы ли данные о ковариации параметра, задали как true
или false
.
Если EstimateCovariance
является true
, то используйте getcov
, чтобы выбрать ковариационную матрицу из предполагаемой модели.
Отображение
Задайте, отобразить ли прогресс оценки'off'
(значение по умолчанию) | 'on'
Задайте, отобразить ли прогресс оценки, заданный как одно из следующих значений:
'on'
— Информация об образцовой структуре и результатах оценки отображена в окне средства просмотра прогресса.
'off'
Никакая информация о прогрессе или результатах отображена.
'InputOffset'
— Удаление смещения от входных данных временного интервала во время оценки[]
(значение по умолчанию) | вектор положительных целых чисел | матрицаУдаление смещения от входных данных временного интервала во время оценки, заданной как пара, разделенная запятой, состоящая из 'InputOffset'
и одно из следующего:
Вектор-столбец положительных целых чисел длины Nu, где Nu является количеством входных параметров.
[]
— Не указывает ни на какое смещение.
Nu-by-Ne матрица — Для данных мультиэксперимента, задайте InputOffset
как Nu-by-Ne матрица. Nu является количеством входных параметров, и Ne является количеством экспериментов.
Каждая запись, заданная InputOffset
, вычтена из соответствующих входных данных.
'OutputOffset'
— Удаление смещения от выходных данных временного интервала во время оценки[]
(значение по умолчанию) | вектор | матрицаУдаление смещения от выходных данных временного интервала во время оценки, заданной как пара, разделенная запятой, состоящая из 'OutputOffset'
и одно из следующего:
Вектор-столбец длины Ny, где Ny является количеством выходных параметров.
[]
— Не указывает ни на какое смещение.
Ny-by-Ne матрица — Для данных мультиэксперимента, задайте OutputOffset
как Ny-by-Ne матрица. Ny является количеством выходных параметров, и Ne является количеством экспериментов.
Каждая запись, заданная OutputOffset
, вычтена из соответствующих выходных данных.
'OutputWeight'
— Взвешивание ошибок прогноза по мультивыходным оценкам[]
(значение по умолчанию) | 'noise'
| положительная полуопределенная симметрическая матрицаВзвешивание ошибок прогноза по мультивыходным оценкам, заданным как одно из следующих значений:
'noise'
— Минимизировать , где E представляет ошибку прогноза, и N
является количеством выборок данных. Этот выбор оптимален в статистическом смысле и приводит к оценкам наибольшего правдоподобия, если ничто не известно об отклонении шума. Это использует инверсию предполагаемого шумового отклонения как функция взвешивания.
OutputWeight
не должен быть 'noise'
, если SearchMethod
является 'lsqnonlin'
.
Положительная полуопределенная симметрическая матрица (W
) — Минимизирует трассировку взвешенной ошибочной матрицы прогноза trace(E'*E*W/N)
где:
E является матрицей ошибок прогноза с одним столбцом для каждого вывода, и W является положительной полуопределенной симметрической матрицей размера, равного количеству выходных параметров. Используйте W, чтобы задать относительную важность выходных параметров в нескольких - выходные модели или надежность соответствующих данных.
N
является количеством выборок данных.
[]
— Программное обеспечение выбирает между 'noise'
или использованием единичной матрицы для W
.
Эта опция важна только для мультивыходных моделей.
'Regularization'
— Опции для упорядоченной оценки параметров моделиОпции для упорядоченной оценки параметров модели. Для получения дополнительной информации о регуляризации смотрите Упорядоченные Оценки Параметров модели.
Regularization
является структурой со следующими полями:
\lambda
Постоянный, который определяет смещение по сравнению с компромиссом отклонения.
Задайте положительную скалярную величину, чтобы добавить срок регуляризации в стоимость оценки.
Значение по умолчанию нуля не подразумевает регуляризации.
Значение по умолчанию: 0
R
Взвешивание матрицы.
Задайте вектор неотрицательных чисел или квадратной положительной полуопределенной матрицы. Длина должна быть равна количеству свободных параметров модели.
Для моделей черного ящика, с помощью значения по умолчанию рекомендуется. Для структурированного и моделей серого поля, можно также задать вектор положительных чисел np
, таким образом, что каждая запись обозначает уверенность в значении связанного параметра.
Значение по умолчанию 1 подразумевает значение eye(npfree)
, где npfree
является количеством свободных параметров.
Значение по умолчанию: 1
Nominal
— Номинальная стоимость, к которой свободные параметры вытягивают во время оценки.
Значение по умолчанию нуля подразумевает, что значения параметров вытягивают по направлению к нулю. Если вы совершенствовали модель, можно установить значение к 'model'
, чтобы вытянуть параметры к значениям параметров первоначальной модели. Начальные значения параметров должны быть конечными для этого принимающегося за работу.
Значение по умолчанию: 0
'SearchMethod'
— Числовой метод поиска используется для итеративной оценки параметра'auto'
(значение по умолчанию) | 'gn'
| 'gna'
| 'lm'
| 'grad'
| 'lsqnonlin'
| 'fmincon'
Числовой метод поиска используется для итеративной оценки параметра, заданной как пара, разделенная запятой, состоящая из 'SearchMethod'
и одно из следующего:
'auto'
Комбинацию алгоритмов поиска строки, 'gn'
, 'lm'
, 'gna'
и методов 'grad'
пробуют в последовательности в каждой итерации. Первое продвижение направления спуска к сокращению стоимости оценки используется.
'gn'
— Поиск наименьших квадратов Ньютона Гаусса подпространства. Сингулярные значения якобиевской матрицы меньше, чем GnPinvConstant*eps*max(size(J))*norm(J)
отбрасываются при вычислении поискового направления. J является якобиевской матрицей. Матрица Гессиана аппроксимирована как JTJ. Если нет никакого улучшения этого направления, функция пробует направление градиента.
'gna'
— Адаптивный поиск Ньютона Гаусса подпространства. Меньше собственных значений, чем gamma*max(sv)
Гессиана проигнорированы, где sv содержит сингулярные значения Гессиана. Направление Ньютона Гаусса вычисляется в остающемся подпространстве. gamma имеет начальное значение InitialGnaTolerance
(см. Advanced
в 'SearchOptions'
для получения дополнительной информации). Это значение увеличено факторным LMStep
каждый раз, когда поиску не удается найти нижнее значение критерия меньше чем в пяти делениях пополам. Это значение уменьшено факторным 2*LMStep
каждый раз, когда поиск успешен без любых делений пополам.
'lm'
— Поиск наименьших квадратов Levenberg-Marquardt, где следующим значением параметров является -pinv(H+d*I)*grad
от предыдущего. H является Гессиан, I является единичной матрицей, и grad является градиентом. d является числом, которое увеличено, пока нижнее значение критерия не найдено.
'grad'
— Поиск наименьших квадратов быстрейшего спуска.
'lsqnonlin'
— Доверительная область отражающий алгоритм lsqnonlin
. Программное обеспечение Requires Optimization Toolbox™.
'fmincon'
— Ограниченные нелинейные решатели. Можно использовать последовательное квадратичное программирование (SQP) и доверять области отражающие алгоритмы решателя fmincon
. Если у вас есть программное обеспечение Optimization Toolbox, можно также использовать внутреннюю точку и алгоритмы активного набора решателя fmincon
. Задайте алгоритм в опции SearchOptions.Algorithm
. Алгоритмы fmincon
могут привести к улучшенным результатам оценки в следующих сценариях:
Ограниченные проблемы минимизации, когда существуют границы, наложенные на параметры модели.
Образцовые структуры, где функция потерь является нелинейным или не сглаженной функцией параметров.
Мультивыведите образцовую оценку. Определяющая функция потерь минимизирована по умолчанию для мультивыходной оценки модели. алгоритмы fmincon
могут минимизировать такие функции потерь непосредственно. Другие методы поиска, такие как 'lm'
и 'gn'
минимизируют определяющую функцию потерь путем альтернативной оценки шумового отклонения и сокращения значения потерь для данного шумового значения отклонения. Следовательно, алгоритмы fmincon
могут предложить лучшую эффективность и точность для мультивыходных оценок модели.
'SearchOptions'
— Опция установлена для алгоритма поискаНабор опции для алгоритма поиска, заданного как пара, разделенная запятой, состоящая из 'SearchOptions'
и набора параметра поиска с полями, которые зависят от значения SearchMethod
.
Структура SearchOptions
, Когда SearchMethod
Задан как 'gn'
, 'gna'
, 'lm'
, 'grad'
или 'auto'
Имя поля | Описание | Значение по умолчанию | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tolerance | Минимальная процентная разница между текущим значением функции потерь и ее ожидаемым улучшением после следующей итерации, заданной как положительная скалярная величина. Когда процент ожидаемого улучшения является меньше, чем | 0.01 | ||||||||||||||||||||||||||||||
MaxIterations | Максимальное количество итераций во время минимизации функции потерь, заданной как положительное целое число. Итерации останавливаются, когда Установка Используйте | 20 | ||||||||||||||||||||||||||||||
Advanced | Настройки расширенного поиска, заданные как структура со следующими полями:
|
Структура SearchOptions
, Когда SearchMethod
Задан как 'lsqnonlin'
Имя поля | Описание | Значение по умолчанию |
---|---|---|
FunctionTolerance | Допуск завершения на функции потерь, которую программное обеспечение минимизирует, чтобы определить предполагаемые значения параметров, заданные как положительная скалярная величина. Значение | 1e-5 |
StepTolerance | Допуск завершения на предполагаемых значениях параметров, заданных как положительная скалярная величина. Значение | 1e-6 |
MaxIterations | Максимальное количество итераций во время минимизации функции потерь, заданной как положительное целое число. Итерации останавливаются, когда Значение | 20 |
Advanced | Настройки расширенного поиска, заданные как опция, установлены для Для получения дополнительной информации см. таблицу Optimization Options в Опциях Оптимизации (Optimization Toolbox). | Используйте optimset('lsqnonlin') , чтобы создать набор опции по умолчанию. |
Структура SearchOptions
, Когда SearchMethod
Задан как 'fmincon'
Имя поля | Описание | Значение по умолчанию |
---|---|---|
Algorithm | Алгоритм оптимизации
Для получения дополнительной информации об алгоритмах, см. Ограниченные Нелинейные Алгоритмы Оптимизации (Optimization Toolbox) и Выбор Algorithm (Optimization Toolbox). | 'sqp' |
FunctionTolerance | Допуск завершения на функции потерь, которую программное обеспечение минимизирует, чтобы определить предполагаемые значения параметров, заданные как положительная скалярная величина. | 1e-6 |
StepTolerance | Допуск завершения на предполагаемых значениях параметров, заданных как положительная скалярная величина. | 1e-6 |
MaxIterations | Максимальное количество итераций во время минимизации функции потерь, заданной как положительное целое число. Итерации останавливаются, когда | 100 |
'Advanced'
— Дополнительные расширенные настройкиДополнительные расширенные настройки, заданные как структура со следующими полями:
ErrorThreshold
— Задает, когда настроить вес больших ошибок от квадратичного до линейного.
Ошибки, больше, чем времена ErrorThreshold
предполагаемое стандартное отклонение, имеют линейный вес в функции потерь. Стандартное отклонение оценивается надежно как медиана абсолютных отклонений от медианы ошибок прогноза, разделенных на 0.7
. Для получения дополнительной информации об устойчивом выборе нормы смотрите раздел 15.2 из [4].
ErrorThreshold = 0
отключает robustification и приводит к чисто квадратичной функции потерь. При оценке с данными частотного диапазона программное обеспечение обнуляет ErrorThreshold
. Для данных временного интервала, которые содержат выбросы, попробуйте установку ErrorThreshold
к 1.6
.
Значение по умолчанию:
0
MaxSize
— Задает максимальное количество элементов в сегменте, когда данные ввода - вывода разделены в сегменты.
MaxSize
должен быть положительным целым числом.
Значение по умолчанию:
250000
StabilityThreshold
— Задает пороги для тестов устойчивости.
StabilityThreshold
является структурой со следующими полями:
s
Задает местоположение самого правого полюса, чтобы протестировать устойчивость непрерывно-разовых моделей. Модель рассматривается стабильной, когда ее самый правый полюс слева от s
.
Значение по умолчанию:
0
z
Задает максимальное расстояние всех полюсов от источника, чтобы протестировать устойчивость моделей дискретного времени. Модель рассматривается стабильной, если всеми полюсами является на расстоянии z
от источника.
Значение по умолчанию:
1+sqrt(eps)
AutoInitThreshold
— Задает, когда автоматически оценить начальные условия.
Начальное условие оценивается когда
ymeas является измеренный вывод.
yp,z является предсказанный вывод модели, оцененной с помощью нулевых начальных состояний.
yp,e является предсказанный вывод модели, оцененной с помощью оцененных начальных состояний.
Применимый, когда InitialState
является 'auto'
.
Значение по умолчанию:
1.05
DDC
— Задает, используется ли Управляемый данными алгоритм Координат [5], чтобы оценить свободно параметризованные модели в пространстве состояний.
Задайте DDC
как одно из следующих значений:
'on'
— Свободные параметры спроектированы к уменьшаемому пробелу идентифицируемых параметров с помощью Управляемого данными алгоритма Координат.
'off'
Все записи A, B и C, обновленного непосредственно с помощью выбранного SearchMethod
.
Значение по умолчанию:
'on'
opt
— Опция установлена для ssest
ssestOptions
установленаНабор опции для ssest
, возвращенного как опция ssestOptions
, установлен.
opt = ssestOptions;
Создайте набор опции для ssest
с помощью алгоритма 'backcast'
, чтобы инициализировать состояние и установить Display
на 'on'
.
opt = ssestOptions('InitialState','backcast','Display','on');
Также используйте запись через точку, чтобы установить значения opt
.
opt = ssestOptions; opt.InitialState = 'backcast'; opt.Display = 'on';
[1] Larimore, W.E. "Канонический анализ варьируемой величины в идентификации, фильтрации и адаптивном управлении". Продолжения 29-й Конференции по IEEE по Решению и Управлению, стр 596–604, 1990.
[2] Verhaegen, M. “Идентификация детерминированной части моделей в пространстве состояний MIMO”. Automatica, Издание 30, № 1, 1994, стр 61–74.
[3] Завещания, Эдриан, Б. Ниннесс и С. Гибсон. “На основанном на градиенте поиске многомерных системных оценок”. Продолжения 16-го мирового Конгресса IFAC, Прага, Чешская Республика, 3-8 июля 2005. Оксфорд, Великобритания: Elsevier Ltd., 2005.
[4] Ljung, L. System Identification: теория для пользователя. Верхний Сэддл-Ривер, NJ: PTR Prentice Hall, 1999.
[5] Маккельви, T., А. Хелмирссон и Т. Рибэритс. “Управляемые данными локальные координаты для многомерных линейных систем и их приложения к системе идентификации”. Automatica, Объем 40, № 9, 2004, стр 1629–1635.
[6] Янссон, M. “Идентификация подпространства и моделирование ARX”. 13-й Симпозиум IFAC по System Identification, Роттердаму, Нидерланды, 2003.
[7] Ozdemir, A. A. и С. Гумоссой. "Оценка Передаточной функции Тулбокс Системы идентификации через Подбор кривой Вектора". Продолжения 20-го Мирового Конгресса Международной федерации Автоматического управления. Тулуза, Франция, июль 2017.
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.