meanrot

Среднее вращение кватерниона

Синтаксис

quatAverage = meanrot(quat)
quatAverage = meanrot(quat,dim)
quatAverage = meanrot(___,nanflag)

Описание

пример

quatAverage = meanrot(quat) возвращает среднее вращение элементов quat вдоль первого измерения массива, размер которого не действительно равняется 1.

  • Если quat является вектором, meanrot(quat) возвращает среднее вращение элементов.

  • Если quat является матрицей, meanrot(quat) возвращает вектор - строку, содержащий среднее вращение каждого столбца.

  • Если quat является многомерным массивом, то mearot(quat) действует вдоль первого измерения массива, размер которого не равняется 1, обрабатывая элементы как векторы. Эта размерность становится 1, в то время как размеры всех других размерностей остаются то же самое.

Функция meanrot нормирует входные кватернионы, quat, прежде, чем вычислить среднее значение.

quatAverage = meanrot(quat,dim) возвратите среднее вращение по измерению dim. Например, если quat является матрицей, то meanrot(quat,2) является вектор-столбцом, содержащим среднее значение каждой строки.

quatAverage = meanrot(___,nanflag) задает, включать ли или не использовать значения NaN от вычисления для какого-либо из предыдущих синтаксисов. meanrot(quat,'includenan') включает все значения NaN в вычисление, в то время как mean(quat,'omitnan') игнорирует их.

Примеры

свернуть все

Создайте матрицу кватернионов, соответствующих трем наборам Углов Эйлера.

eulerAngles = [40 20 10; ...
               50 10 5; ...
               45 70 1];

quat = quaternion(eulerAngles,'eulerd','ZYX','frame');

Определите среднее вращение, представленное кватернионами. Преобразуйте среднее вращение в Углы Эйлера в градусах для удобочитаемости.

quatAverage = meanrot(quat)
eulerAverage = eulerd(quatAverage,'ZYX','frame')
quatAverage = 

  quaternion


      0.88863 - 0.062598i +  0.27822j +  0.35918k


eulerAverage =

   45.7876   32.6452    6.0407

Используйте meanrot по последовательности кватернионов, чтобы составить в среднем аддитивный шум.

Создайте вектор 1e6 кватернионы, расстояние которых, как задано функцией dist, от кватерниона (1,0,0,0) нормально распределено. Постройте Углы Эйлера, соответствующие шумному вектору кватерниона.

nrows = 1e6;
ax = 2*rand(nrows,3) - 1;
ax = ax./sqrt(sum(ax.^2,2));
ang = 0.5*randn(size(ax,1),1);
q = quaternion(ax.*ang ,'rotvec');

noisyEulerAngles = eulerd(q,'ZYX','frame');

figure(1)

subplot(3,1,1)
plot(noisyEulerAngles(:,1))
title('Z-Axis')
ylabel('Rotation (degrees)')
hold on

subplot(3,1,2)
plot(noisyEulerAngles(:,2))
title('Y-Axis')
ylabel('Rotation (degrees)')
hold on

subplot(3,1,3)
plot(noisyEulerAngles(:,3))
title('X-Axis')
ylabel('Rotation (degrees)')
hold on

Используйте meanrot, чтобы определить средний кватернион, учитывая вектор кватернионов. Преобразуйте в Углы Эйлера и постройте результаты.

qAverage = meanrot(q);

qAverageInEulerAngles = eulerd(qAverage,'ZYX','frame');

figure(1)

subplot(3,1,1)
plot(ones(nrows,1)*qAverageInEulerAngles(:,1))
title('Z-Axis')

subplot(3,1,2)
plot(ones(nrows,1)*qAverageInEulerAngles(:,2))
title('Y-Axis')

subplot(3,1,3)
plot(ones(nrows,1)*qAverageInEulerAngles(:,3))
title('X-Axis')

Алгоритм meanrot

Функция meanrot выводит кватернион, который минимизирует норму Фробениуса в квадрате различия между матрицами вращения. Рассмотрите два кватерниона:

  • q0 не представляет вращения.

  • q90 представляет 90 вращений степени вокруг оси X.

q0 = quaternion([0 0 0],'eulerd','ZYX','frame');
q90 = quaternion([0 0 90],'eulerd','ZYX','frame');

Создайте развертку кватерниона, qSweep, который представляет вращения от 0 до 180 градусов об оси X.

eulerSweep = (0:1:180)';
qSweep = quaternion([zeros(numel(eulerSweep),2),eulerSweep], ...
    'eulerd','ZYX','frame');

Преобразуйте q0, q90 и qSweep к матрицам вращения. В цикле вычислите метрику, чтобы минимизировать для каждого члена развертки кватерниона. Постройте результаты и возвратите значение Эйлеровой развертки, которая соответствует минимуму метрики.

r0     = rotmat(q0,'frame');
r90    = rotmat(q90,'frame');
rSweep = rotmat(qSweep,'frame');

metricToMinimize = zeros(size(rSweep,3),1);
for i = 1:numel(qSweep)
    metricToMinimize(i) = norm((rSweep(:,:,i) - r0),'fro').^2 + ...
                          norm((rSweep(:,:,i) - r90),'fro').^2;
end

plot(eulerSweep,metricToMinimize)
xlabel('Euler Sweep (degrees)')
ylabel('Metric to Minimize')

[~,eulerIndex] = min(metricToMinimize);
eulerSweep(eulerIndex)
ans =

    45

Минимум метрики соответствует развертке Угла Эйлера в 45 градусах. Таким образом, meanrot задает среднее значение между quaterion([0 0 0],'ZYX','frame') и quaternion([0 0 90],'ZYX','frame') как quaternion([0 0 45],'ZYX','frame'). Вызовите meanrot с q0 и q90, чтобы проверить тот же результат.

eulerd(meanrot([q0,q90]),'ZYX','frame')
ans =

         0         0   45.0000

Ограничения

Метрика, что использование meanrot, чтобы определить среднее вращение не уникально для кватернионов значительно далеко друг от друга. Повторите эксперимент выше для кватернионов, которые разделяются 180 градусами.

q180 = quaternion([0 0 180],'eulerd','ZYX','frame');
r180 = rotmat(q180,'frame');

for i = 1:numel(qSweep)
    metricToMinimize(i) = norm((rSweep(:,:,i) - r0),'fro').^2 + ...
                          norm((rSweep(:,:,i) - r180),'fro').^2;
end

plot(eulerSweep,metricToMinimize)
xlabel('Euler Sweep (degrees)')
ylabel('Metric to Minimize')

[~,eulerIndex] = min(metricToMinimize);
eulerSweep(eulerIndex)
ans =

   159

Средние значения кватерниона обычно вычисляются для вращений, которые являются друг близко к другу, который делает случай ребра показанным в этом примере вряд ли в реальных приложениях. Чтобы составить в среднем два кватерниона, которые являются значительно далеко друг от друга, используйте функцию slerp. Повторите эксперимент с помощью slerp и проверьте, что возвращенное среднее значение кватерниона более интуитивно для больших расстояний.

qMean = slerp(q0,q180,0.5);
q0_q180 = eulerd(qMean,'ZYX','frame')
q0_q180 =

         0         0   90.0000

Входные параметры

свернуть все

Кватернион, для которого можно вычислить среднее значение, заданное как скаляр, вектор, матрица или многомерный массив кватернионов.

Типы данных: quaternion

Величина для работы, заданная как положительный целый скаляр. Если значение не задано, то по умолчанию это первый размер массива, не равный 1.

dim размерности указывает на размерность, длина которой уменьшает до 1. size(quatAverage,dim) является 1, в то время как размеры всех других размерностей остаются то же самое.

Типы данных: double | single

Условие NaN, заданное как одно из этих значений:

  • 'includenan' – Включайте значения NaN при вычислении среднего вращения, приведении к NaN.

  • 'omitnan' – Проигнорируйте все значения NaN во входе.

Типы данных: char | string

Выходные аргументы

свернуть все

Среднее вращение кватерниона, возвращенное как скаляр, вектор, матрица или многомерный массив.

Типы данных: single | double

Алгоритмы

meanrot определяет среднее значение кватерниона, q¯, согласно [1] (Sensor Fusion and Tracking Toolbox). q¯ кватернион, который минимизирует норму Фробениуса в квадрате различия между матрицами вращения:

q¯=аргументminqS3i=1nA(q)A(qi)F2

Ссылки

[1] Markley, Ф. Лэндис, Янг Чен, Джон Лукас Крэссидис и Яаков Ошман. "Средние Кватернионы". Журнал Руководства, Управления и Динамики. Издание 30, Выпуск 4, 2007, стр 1193-1197.

Расширенные возможности

Генерация кода C/C++
Генерация кода C и C++ с помощью MATLAB® Coder™.

Введенный в R2018b

Для просмотра документации необходимо авторизоваться на сайте