Ребро классификации для наблюдений, не используемых для обучения
e = kfoldEdge(CVMdl)
e = kfoldEdge(CVMdl,Name,Value)
возвращает перекрестные подтвержденные ребра классификации, полученные перекрестным подтвержденным, двоичным файлом, линейной моделью e
= kfoldEdge(CVMdl
)CVMdl
классификации. Таким образом, для каждого сгиба kfoldEdge
оценивает ребро классификации для наблюдений, что это протягивает, когда это обучает использование всех других наблюдений.
e
содержит ребро классификации для каждой силы регуляризации в линейных моделях классификации, которые включают CVMdl
.
дополнительные опции использования заданы одним или несколькими аргументами пары e
= kfoldEdge(CVMdl
,Name,Value
)Name,Value
. Например, укажите который сгибы использовать для вычисления ребра.
CVMdl
— Перекрестный подтвержденный, двоичный файл, линейная модель классификацииClassificationPartitionedLinear
Перекрестный подтвержденный, двоичный файл, линейная модель классификации, заданная как объект модели ClassificationPartitionedLinear
. Можно создать модель ClassificationPartitionedLinear
с помощью fitclinear
и задав любую из перекрестной проверки, аргументов пары "имя-значение", например, CrossVal
.
Чтобы получить оценки, kfoldEdge применяется, те же данные раньше перекрестный подтверждали линейную модель классификации (X
и Y
).
Укажите необязательные аргументы в виде пар ""имя, значение"", разделенных запятыми.
Имя (Name) — это имя аргумента, а значение (Value) — соответствующее значение.
Name
должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN.
'Folds'
— Сверните индексы, чтобы использовать для прогноза счета классификации1:CVMdl.KFold
(значение по умолчанию) | числовой вектор положительных целых чиселСверните индексы, чтобы использовать для прогноза счета классификации, заданного как пара, разделенная запятой, состоящая из 'Folds'
и числовой вектор положительных целых чисел. Элементы Folds
должны колебаться от 1
до CVMdl.KFold
.
Пример: 'Folds',[1 4 10]
Типы данных: single | double
режим
Уровень агрегации ребра'average'
(значение по умолчанию) | 'individual'
Уровень агрегации ребра, заданный как пара, разделенная запятой, состоящая из 'Mode'
и 'average'
или 'individual'
.
Значение | Описание |
---|---|
'average' | Возвращает ребра классификации, усредненные по всем сгибам |
'individual' | Возвращает ребра классификации для каждого сгиба |
Пример: 'Mode','individual'
e
Перекрестные подтвержденные ребра классификацииПерекрестные подтвержденные ребра классификации, возвращенные в виде числа, вектора или матрицы.
Позвольте L
быть количеством сильных мест регуляризации в перекрестных подтвержденных моделях (то есть, L является numel(CVMdl.Trained{1}.Lambda)
), и F
быть количеством сгибов (сохраненный в CVMdl.KFold
).
Если Mode
является 'average'
, то e
является 1 L
вектором.
является средним ребром классификации по всем сгибам перекрестной подтвержденной модели, которая использует силу регуляризации e(j)
j
.
В противном случае e
является F
-by-L
матрица.
является ребром классификации для сгиба e(i,j)
i
перекрестной подтвержденной модели, которая использует силу регуляризации j
.
Чтобы оценить e
, kfoldEdge
использует данные, которые создали CVMdl
(см. X
и Y
).
Загрузите набор данных NLP.
load nlpdata
X
является разреженной матрицей данных о предикторе, и Y
является категориальным вектором меток класса. В данных существует больше чем два класса.
Модели должны идентифицировать, являются ли подсчеты слов в веб-странице из документации Statistics and Machine Learning Toolbox™. Так, идентифицируйте метки, которые соответствуют веб-страницам документации Statistics and Machine Learning Toolbox™.
Ystats = Y == 'stats';
Перекрестный подтвердите двоичный файл, линейная модель классификации, которая может идентифицировать, являются ли подсчеты слов в веб-странице документации из документации Statistics and Machine Learning Toolbox™.
rng(1); % For reproducibility CVMdl = fitclinear(X,Ystats,'CrossVal','on');
CVMdl
является моделью ClassificationPartitionedLinear
. По умолчанию программное обеспечение реализует 10-кратную перекрестную проверку. Можно изменить количество сгибов с помощью аргумента пары "имя-значение" 'KFold'
.
Оцените среднее значение ребер из сгиба.
e = kfoldEdge(CVMdl)
e = 8.1243
Также можно получить ребра на сгиб путем определения пары "имя-значение" 'Mode','individual'
в kfoldEdge
.
Один способ выполнить выбор функции состоит в том, чтобы сравнить ребра k-сгиба от многоуровневых моделей. Базирующийся только на этом критерии, классификатор с самым высоким ребром является лучшим классификатором.
Загрузите набор данных NLP. Предварительно обработайте данные как в Оценочном Ребре Перекрестной проверки k-сгиба.
load nlpdata Ystats = Y == 'stats'; X = X';
Создайте эти два набора данных:
fullX
содержит все предикторы.
partX
содержит 1/2 предикторов, выбранных наугад.
rng(1); % For reproducibility p = size(X,1); % Number of predictors halfPredIdx = randsample(p,ceil(0.5*p)); fullX = X; partX = X(halfPredIdx,:);
Перекрестный подтвердите два двоичных файла, линейные модели классификации: тот, который использует все предикторы и тот, который использует половину предикторов. Оптимизируйте использование целевой функции SpaRSA и укажите, что наблюдения соответствуют столбцам.
CVMdl = fitclinear(fullX,Ystats,'CrossVal','on','Solver','sparsa',... 'ObservationsIn','columns'); PCVMdl = fitclinear(partX,Ystats,'CrossVal','on','Solver','sparsa',... 'ObservationsIn','columns');
CVMdl
и PCVMdl
являются моделями ClassificationPartitionedLinear
.
Оцените ребро k-сгиба для каждого классификатора.
fullEdge = kfoldEdge(CVMdl)
fullEdge = 16.5629
partEdge = kfoldEdge(PCVMdl)
partEdge = 13.9030
На основе ребер k-сгиба классификатор, который использует все предикторы, является лучшей моделью.
Чтобы определить хорошую силу штрафа лассо для линейной модели классификации, которая использует ученика логистической регрессии, сравните ребра k-сгиба.
Загрузите набор данных NLP. Предварительно обработайте данные как в Оценочном Ребре Перекрестной проверки k-сгиба.
load nlpdata Ystats = Y == 'stats'; X = X';
Создайте набор 11 логарифмически распределенных сильных мест регуляризации от через .
Lambda = logspace(-8,1,11);
Перекрестный подтвердите двоичный файл, линейная модель классификации использование 5-кратной перекрестной проверки, и это использует каждые из сильных мест регуляризации. Оптимизируйте использование целевой функции SpaRSA. Понизьте допуск на градиент целевой функции к 1e-8
.
rng(10); % For reproducibility CVMdl = fitclinear(X,Ystats,'ObservationsIn','columns','KFold',5,... 'Learner','logistic','Solver','sparsa','Regularization','lasso',... 'Lambda',Lambda,'GradientTolerance',1e-8)
CVMdl = classreg.learning.partition.ClassificationPartitionedLinear CrossValidatedModel: 'Linear' ResponseName: 'Y' NumObservations: 31572 KFold: 5 Partition: [1x1 cvpartition] ClassNames: [0 1] ScoreTransform: 'none' Properties, Methods
CVMdl
является моделью ClassificationPartitionedLinear
. Поскольку fitclinear
реализует 5-кратную перекрестную проверку, CVMdl
содержит 5 моделей ClassificationLinear
, которые программное обеспечение обучает на каждом сгибе.
Оцените ребра для каждого сгиба и силы регуляризации.
eFolds = kfoldEdge(CVMdl,'Mode','individual')
eFolds = 5×11
0.9958 0.9958 0.9958 0.9958 0.9958 0.9924 0.9768 0.9242 0.8444 0.8127 0.8127
0.9991 0.9991 0.9991 0.9991 0.9991 0.9939 0.9781 0.9200 0.8262 0.8128 0.8128
0.9992 0.9992 0.9992 0.9992 0.9992 0.9942 0.9779 0.9090 0.8254 0.8128 0.8128
0.9974 0.9974 0.9974 0.9974 0.9974 0.9931 0.9772 0.9188 0.8487 0.8130 0.8130
0.9977 0.9977 0.9977 0.9977 0.9977 0.9942 0.9781 0.9179 0.8377 0.8127 0.8127
eFolds
5 11 матрица ребер. Строки соответствуют сгибам, и столбцы соответствуют сильным местам регуляризации в Lambda
. Можно использовать eFolds
, чтобы идентифицировать сгибы плохо выполнения, то есть, необычно низкие ребра.
Оцените среднее ребро по всем сгибам для каждой силы регуляризации.
e = kfoldEdge(CVMdl)
e = 1×11
0.9978 0.9978 0.9978 0.9978 0.9978 0.9936 0.9776 0.9180 0.8365 0.8128 0.8128
Определите, как хорошо модели делают вывод путем графического вывода средних значений 5-кратного ребра для каждой силы регуляризации. Идентифицируйте силу регуляризации, которая максимизирует 5-кратное ребро по сетке.
figure; plot(log10(Lambda),log10(e),'-o') [~, maxEIdx] = max(e); maxLambda = Lambda(maxEIdx); hold on plot(log10(maxLambda),log10(e(maxEIdx)),'ro'); ylabel('log_{10} 5-fold edge') xlabel('log_{10} Lambda') legend('Edge','Max edge') hold off
Несколько значений Lambda
приводят к столь же высоким ребрам. Более высокие значения lambda приводят к разреженности переменной прогноза, которая является хорошим качеством классификатора.
Выберите силу регуляризации, которая происходит непосредственно перед тем, как ребро начинает уменьшаться.
LambdaFinal = Lambda(5);
Обучите линейную модель классификации использование целого набора данных и задайте силу регуляризации LambdaFinal
.
MdlFinal = fitclinear(X,Ystats,'ObservationsIn','columns',... 'Learner','logistic','Solver','sparsa','Regularization','lasso',... 'Lambda',LambdaFinal);
Чтобы оценить метки для новых наблюдений, передайте MdlFinal
и новые данные к predict
.
classification edge является взвешенным средним classification margins.
Один способ выбрать среди нескольких классификаторов, например, выполнить выбор функции, состоит в том, чтобы выбрать классификатор, который приводит к самому большому ребру.
classification margin для бинарной классификации, для каждого наблюдения, различия между счетом классификации к истинному классу и счетом классификации к ложному классу.
Программное обеспечение задает поле классификации для бинарной классификации как
x является наблюдением. Если истинная метка x является положительным классом, то y равняется 1, и –1 в противном случае. f (x) является счетом классификации положительных классов к наблюдению x. Поле классификации обычно задается как m = y f (x).
Если поля находятся в той же шкале, то они служат мерой по уверенности классификации. Среди нескольких классификаторов те, которые приводят к большим полям, лучше.
Для линейных моделей классификации, необработанного classification score для классификации наблюдения x, вектор - строка, в положительный класс задан
Для модели с силой регуляризации j, предполагаемый вектор-столбец коэффициентов (образцовое свойство Beta(:,j)
) и предполагаемое, скалярное смещение (образцовое свойство Bias(j)
).
Необработанный счет классификации к классификации x в отрицательный класс является –f (x). Программное обеспечение классифицирует наблюдения в класс, который приводит к положительному счету.
Если линейная модель классификации состоит из учеников логистической регрессии, то программное обеспечение применяет преобразование счета 'logit'
к необработанным очкам классификации (см. ScoreTransform
).
ClassificationLinear
| ClassificationPartitionedLinear
| edge
| kfoldMargin
| kfoldPredict
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.