Подтвердите и извлеките параметры модели машинного обучения, чтобы обновить
Сгенерируйте код C/C++ для predict
и функций update
модели машинного обучения при помощи кодера configurer объект. Создайте этот объект при помощи learnerCoderConfigurer
и его объектного функционального generateCode
. После переквалификации модели с новыми данными или настройками, можно обновить параметры модели в сгенерированном коде, не имея необходимость регенерировать код. Используйте validatedUpdateInputs
, чтобы подтвердить и извлечь параметры модели, чтобы обновить. Эта функция помогает вам идентифицировать потенциальные проблемы, прежде чем вы обновите параметры модели в сгенерированном коде. Можно использовать вывод validatedUpdateInputs
, подтвержденных параметров, как входной параметр функции update
, чтобы обновить параметры модели.
Эта блок-схема показывает рабочий процесс генерации кода с помощью кодера configurer. Используйте validatedUpdateInputs
для подсвеченного шага.
params = validatedUpdateInputs(configurer,retrainedMdl)
возвращает подтвержденные параметры модели машинного обучения, чтобы обновить. params
= validatedUpdateInputs(configurer
,retrainedMdl
)validatedUpdateInputs
обнаруживает измененные параметры модели в retrainedMdl
и подтверждает, удовлетворяют ли они атрибуты кодера, сохраненные в configurer
.
Этот пример использование:
Обучите модель машины вектора поддержки (SVM) использование частичного набора данных и создайте кодер configurer для модели. Используйте свойства кодера configurer, чтобы задать атрибуты кодера параметров модели SVM. Используйте объектную функцию кодера configurer, чтобы сгенерировать код С, который предсказывает ответы для новых данных о предикторе. Затем переобучите модель с помощью целого набора данных и обновите параметры в сгенерированном коде, не регенерируя код.
Модель train
Загрузите набор данных carsmall
и обучите модель регрессии SVM использование первых 50 наблюдений.
load carsmall
X = [Horsepower,Weight];
Y = MPG;
Mdl = fitrsvm(X(1:50,:),Y(1:50));
Mdl
является объектом RegressionSVM
.
Создайте кодер Конфигурера
Создайте кодер configurer для модели RegressionSVM
при помощи learnerCoderConfigurer
. Задайте данные о предикторе X
. Функция learnerCoderConfigurer
использует вход X
, чтобы сконфигурировать атрибуты кодера входного параметра функции predict
.
configurer = learnerCoderConfigurer(Mdl,X(1:50,:));
configurer
является объектом RegressionSVMCoderConfigurer
, который является кодером configurer объекта RegressionSVM
.
Задайте атрибуты кодера параметров
Задайте атрибуты кодера параметров модели регрессии SVM так, чтобы можно было обновить параметры в сгенерированном коде после переквалификации модели. Этот пример задает атрибуты кодера данных о предикторе, которые вы хотите передать сгенерированному коду и атрибутам кодера векторов поддержки модели регрессии SVM.
Во-первых, задайте атрибуты кодера X
так, чтобы сгенерированный код принял любое количество наблюдений. Измените атрибуты VariableDimensions
и SizeVector
. Атрибут SizeVector
задает верхнюю границу размера данных предиктора, и атрибут VariableDimensions
задает, имеет ли каждая размерность данных о предикторе переменный размер или фиксированный размер.
configurer.X.SizeVector = [Inf 2]; configurer.X.VariableDimensions = [true false];
Размер первой размерности является количеством наблюдений. В этом случае код указывает, что верхней границей размера является Inf
, и размер является переменным, означая, что X
может иметь любое количество наблюдений. Эта спецификация удобна, если вы не знаете количество наблюдений при генерации кода.
Размер второго измерения является количеством переменных прогноза. Это значение должно быть зафиксировано для модели машинного обучения. X
содержит два предиктора, таким образом, значение атрибута SizeVector
должно быть два, и значением атрибута VariableDimensions
должен быть false
.
Если вы переобучаете модель SVM с помощью новых данных или различных настроек, количество векторов поддержки может отличаться. Поэтому задайте атрибуты кодера SupportVectors
так, чтобы можно было обновить векторы поддержки в сгенерированном коде.
configurer.SupportVectors.SizeVector = [250 2];
SizeVector attribute for Alpha has been modified to satisfy configuration constraints.
configurer.SupportVectors.VariableDimensions = [true false];
VariableDimensions attribute for Alpha has been modified to satisfy configuration constraints.
Если вы изменяете атрибуты кодера SupportVectors
, то программное обеспечение изменяет атрибуты кодера Alpha
, чтобы удовлетворить ограничения настройки. Если модификация атрибутов кодера одного параметра требует, чтобы последующие изменения к другим зависимым параметрам удовлетворили ограничения настройки, то программное обеспечение изменяет атрибуты кодера зависимых параметров.
Сгенерируйте код
Чтобы сгенерировать код C/C++, у вас должен быть доступ к компилятору C/C++, который сконфигурирован правильно. MATLAB Coder определяет местоположение и использует поддерживаемый, установленный компилятор. Можно использовать mex
-setup
, чтобы просмотреть и изменить компилятор по умолчанию. Для получения дополнительной информации см. Компилятор Значения по умолчанию Изменения (MATLAB).
Используйте generateCode
, чтобы сгенерировать код для predict
и функций update
модели регрессии SVM (Mdl
) с настройками по умолчанию.
generateCode(configurer)
generateCode creates these files in output folder: 'initialize.m', 'predict.m', 'update.m', 'RegressionSVMModel.mat'
generateCode
генерирует файлы MATLAB, требуемые сгенерировать код, включая две функции точки входа predict.m
и update.m
для predict
и функций update
Mdl
, соответственно. Затем generateCode
создает MEX-функцию под названием RegressionSVMModel
для двух функций точки входа в папке codegen\mex\RegressionSVMModel
и копирует MEX-функцию в текущую папку.
Проверьте сгенерированный код
Передайте некоторые данные о предикторе, чтобы проверить, возвращают ли функция predict
Mdl
и функция predict
в MEX-функции те же предсказанные ответы. Чтобы вызвать функцию точки входа в MEX-функции, которая имеет больше чем одну точку входа, задайте имя функции как первый входной параметр.
yfit = predict(Mdl,X);
yfit_mex = RegressionSVMModel('predict',X);
yfit_mex
может включать различия в округлении по сравнению с yfit
. В этом случае сравните yfit
и yfit_mex
, позволив маленький допуск.
find(abs(yfit-yfit_mex) > 1e-6)
ans = 0x1 empty double column vector
Сравнение подтверждает, что yfit
и yfit_mex
равны в допуске 1e–6
.
Переобучите модель и обновите параметры в сгенерированном коде
Переобучите модель с помощью целого набора данных.
retrainedMdl = fitrsvm(X,Y);
Извлеките параметры, чтобы обновить при помощи validatedUpdateInputs
. Эта функция обнаруживает измененные параметры модели в retrainedMdl
и подтверждает, удовлетворяют ли измененные значения параметров атрибуты кодера параметров.
params = validatedUpdateInputs(configurer,retrainedMdl);
Обновите параметры в сгенерированном коде.
RegressionSVMModel('update',params)
Проверьте сгенерированный код
Сравните выходные параметры от функции predict
retrainedMdl
и функции predict
в обновленной MEX-функции.
yfit = predict(retrainedMdl,X);
yfit_mex = RegressionSVMModel('predict',X);
find(abs(yfit-yfit_mex) > 1e-6)
ans = 0x1 empty double column vector
Сравнение подтверждает, что yfit
и yfit_mex
равны в допуске 1e-6
.
Этот пример использование:
Обучите модель SVM с помощью частичного набора данных и создайте кодер configurer для модели. Используйте свойства кодера configurer, чтобы задать атрибуты кодера параметров модели SVM. Используйте объектную функцию кодера configurer, чтобы сгенерировать код С, который предсказывает метки для новых данных о предикторе. Затем переобучите модель с помощью целого набора данных и обновите параметры в сгенерированном коде, не регенерируя код.
Модель train
Загрузите набор данных ionosphere
. Этот набор данных имеет 34 предиктора, и 351 бинарный ответ для радара возвращается, или плохой ('b'
) или хороший ('g'
). Обучите бинарную модель классификации SVM использование первых 50 наблюдений.
load ionosphere
Mdl = fitcsvm(X(1:50,:),Y(1:50));
Mdl
является объектом ClassificationSVM
.
Создайте кодер Конфигурера
Создайте кодер configurer для модели ClassificationSVM
при помощи learnerCoderConfigurer
. Задайте данные о предикторе X
. Функция learnerCoderConfigurer
использует вход X
, чтобы сконфигурировать атрибуты кодера входного параметра функции predict
. Кроме того, определите номер выходных параметров к 2 так, чтобы сгенерированный код возвратил предсказанные метки и очки.
configurer = learnerCoderConfigurer(Mdl,X(1:50,:),'NumOutputs',2);
configurer
является объектом ClassificationSVMCoderConfigurer
, который является кодером configurer объекта ClassificationSVM
.
Задайте атрибуты кодера параметров
Задайте атрибуты кодера параметров модели классификации SVM так, чтобы можно было обновить параметры в сгенерированном коде после переквалификации модели. Этот пример задает атрибуты кодера данных о предикторе, которые вы хотите передать сгенерированному коду и атрибутам кодера векторов поддержки модели SVM.
Во-первых, задайте атрибуты кодера X
так, чтобы сгенерированный код принял любое количество наблюдений. Измените атрибуты VariableDimensions
и SizeVector
. Атрибут SizeVector
задает верхнюю границу размера данных предиктора, и атрибут VariableDimensions
задает, имеет ли каждая размерность данных о предикторе переменный размер или фиксированный размер.
configurer.X.SizeVector = [Inf 34]; configurer.X.VariableDimensions = [true false];
Размер первой размерности является количеством наблюдений. В этом случае код указывает, что верхней границей размера является Inf
, и размер является переменным, означая, что X
может иметь любое количество наблюдений. Эта спецификация удобна, если вы не знаете количество наблюдений при генерации кода.
Размер второго измерения является количеством переменных прогноза. Это значение должно быть зафиксировано для модели машинного обучения. X
содержит 34 предиктора, таким образом, значение атрибута SizeVector
должно быть 34, и значением атрибута VariableDimensions
должен быть false
.
Если вы переобучаете модель SVM с помощью новых данных или различных настроек, количество векторов поддержки может отличаться. Поэтому задайте атрибуты кодера SupportVectors
так, чтобы можно было обновить векторы поддержки в сгенерированном коде.
configurer.SupportVectors.SizeVector = [250 34];
SizeVector attribute for Alpha has been modified to satisfy configuration constraints. SizeVector attribute for SupportVectorLabels has been modified to satisfy configuration constraints.
configurer.SupportVectors.VariableDimensions = [true false];
VariableDimensions attribute for Alpha has been modified to satisfy configuration constraints. VariableDimensions attribute for SupportVectorLabels has been modified to satisfy configuration constraints.
Если вы изменяете атрибуты кодера SupportVectors
, то программное обеспечение изменяет атрибуты кодера Alpha
и SupportVectorLabels
, чтобы удовлетворить ограничения настройки. Если модификация атрибутов кодера одного параметра требует, чтобы последующие изменения к другим зависимым параметрам удовлетворили ограничения настройки, то программное обеспечение изменяет атрибуты кодера зависимых параметров.
Сгенерируйте код
Чтобы сгенерировать код C/C++, у вас должен быть доступ к компилятору C/C++, который сконфигурирован правильно. MATLAB Coder определяет местоположение и использует поддерживаемый, установленный компилятор. Можно использовать mex
-setup
, чтобы просмотреть и изменить компилятор по умолчанию. Для получения дополнительной информации см. Компилятор Значения по умолчанию Изменения (MATLAB).
Используйте generateCode
, чтобы сгенерировать код для predict
и функций update
модели классификации SVM (Mdl
) с настройками по умолчанию.
generateCode(configurer)
generateCode creates these files in output folder: 'initialize.m', 'predict.m', 'update.m', 'ClassificationSVMModel.mat'
generateCode
генерирует файлы MATLAB, требуемые сгенерировать код, включая две функции точки входа predict.m
и update.m
для predict
и функций update
Mdl
, соответственно. Затем generateCode
создает MEX-функцию под названием ClassificationSVMModel
для двух функций точки входа в папке codegen\mex\ClassificationSVMModel
и копирует MEX-функцию в текущую папку.
Проверьте сгенерированный код
Передайте некоторые данные о предикторе, чтобы проверить, возвращают ли функция predict
Mdl
и функция predict
в MEX-функции те же метки. Чтобы вызвать функцию точки входа в MEX-функции, которая имеет больше чем одну точку входа, задайте имя функции как первый входной параметр.
[label,score] = predict(Mdl,X);
[label_mex,score_mex] = ClassificationSVMModel('predict',X);
Сравните label
и label_mex
при помощи isequal
.
isequal(label,label_mex)
ans = logical
1
isequal
возвращает логическую единицу (true
), если все входные параметры равны. Сравнение подтверждает, что функция predict
Mdl
и функция predict
в MEX-функции возвращают те же метки.
score_mex
может включать различия в округлении по сравнению с score
. В этом случае сравните score_mex
и score
, позволив маленький допуск.
find(abs(score-score_mex) > 1e-8)
ans = 0x1 empty double column vector
Сравнение подтверждает, что score
и score_mex
равны в допуске 1e–8
.
Переобучите модель и обновите параметры в сгенерированном коде
Переобучите модель с помощью целого набора данных.
retrainedMdl = fitcsvm(X,Y);
Извлеките параметры, чтобы обновить при помощи validatedUpdateInputs
. Эта функция обнаруживает измененные параметры модели в retrainedMdl
и подтверждает, удовлетворяют ли измененные значения параметров атрибуты кодера параметров.
params = validatedUpdateInputs(configurer,retrainedMdl);
Обновите параметры в сгенерированном коде.
ClassificationSVMModel('update',params)
Проверьте сгенерированный код
Сравните выходные параметры от функции predict
retrainedMdl
и функции predict
в обновленной MEX-функции.
[label,score] = predict(retrainedMdl,X);
[label_mex,score_mex] = ClassificationSVMModel('predict',X);
isequal(label,label_mex)
ans = logical
1
find(abs(score-score_mex) > 1e-8)
ans = 0x1 empty double column vector
Сравнение подтверждает, что labels
и labels_mex
равны, и значения счета равны в допуске.
Этот пример использование:
Обучите модель выходных кодов с коррекцией ошибок (ECOC), использующую двоичных учеников SVM, и создайте кодер configurer для модели. Используйте свойства кодера configurer, чтобы задать атрибуты кодера параметров модели ECOC. Используйте объектную функцию кодера configurer, чтобы сгенерировать код С, который предсказывает метки для новых данных о предикторе. Затем переобучите модель с помощью различных настроек и обновите параметры в сгенерированном коде, не регенерируя код.
Модель train
Загрузите ирисовый набор данных Фишера.
load fisheriris
X = meas;
Y = species;
Создайте бинарный шаблон ученика SVM, чтобы использовать Гауссову функцию ядра и стандартизировать данные о предикторе.
t = templateSVM('KernelFunction','gaussian','Standardize',true);
Обучите мультикласс модель ECOC с помощью шаблона t
.
Mdl = fitcecoc(X,Y,'Learners',t);
Mdl
является объектом ClassificationECOC
.
Создайте кодер Конфигурера
Создайте кодер configurer для модели ClassificationECOC
при помощи learnerCoderConfigurer
. Задайте данные о предикторе X
. Функция learnerCoderConfigurer
использует вход X
, чтобы сконфигурировать атрибуты кодера входного параметра функции predict
. Кроме того, определите номер выходных параметров к 2 так, чтобы сгенерированный код возвратил сначала два выходных параметра функции predict
, которые являются предсказанными метками и инвертировали средние бинарные потери.
configurer = learnerCoderConfigurer(Mdl,X,'NumOutputs',2)
configurer = ClassificationECOCCoderConfigurer with properties: Update Inputs: BinaryLearners: [1×1 ClassificationSVMCoderConfigurer] Prior: [1×1 LearnerCoderInput] Cost: [1×1 LearnerCoderInput] Predict Inputs: X: [1×1 LearnerCoderInput] Code Generation Parameters: NumOutputs: 2 OutputFileName: 'ClassificationECOCModel' Properties, Methods
configurer
является объектом ClassificationECOCCoderConfigurer
, который является кодером configurer объекта ClassificationECOC
. Отображение показывает настраиваемые входные параметры predict
и update
: X
, BinaryLearners
, Prior
и Cost
.
Задайте атрибуты кодера параметров
Задайте атрибуты кодера аргументов predict
(данные о предикторе и аргументы пары "имя-значение" 'Decoding'
и 'BinaryLoss'
) и аргументов update
(векторы поддержки учеников SVM) так, чтобы можно было использовать эти аргументы в качестве входных параметров predict
и update
в сгенерированном коде.
Во-первых, задайте атрибуты кодера X
так, чтобы сгенерированный код принял любое количество наблюдений. Измените атрибуты VariableDimensions
и SizeVector
. Атрибут SizeVector
задает верхнюю границу размера данных предиктора, и атрибут VariableDimensions
задает, имеет ли каждая размерность данных о предикторе переменный размер или фиксированный размер.
configurer.X.SizeVector = [Inf 4]; configurer.X.VariableDimensions = [true false];
Размер первой размерности является количеством наблюдений. В этом случае код указывает, что верхней границей размера является Inf
, и размер является переменным, означая, что X
может иметь любое количество наблюдений. Эта спецификация удобна, если вы не знаете количество наблюдений при генерации кода.
Размер второго измерения является количеством переменных прогноза. Это значение должно быть зафиксировано для модели машинного обучения. X
содержит 4 предиктора, таким образом, второе значение атрибута SizeVector
должно быть 4, и вторым значением атрибута VariableDimensions
должен быть false
.
Затем, измените атрибуты кодера BinaryLoss
и Decoding
, чтобы использовать аргументы пары "имя-значение" 'BinaryLoss'
и 'Decoding'
в сгенерированном коде. Отобразите атрибуты кодера BinaryLoss
.
configurer.BinaryLoss
ans = EnumeratedInput with properties: Value: 'hinge' SelectedOption: 'Built-in' BuiltInOptions: {'hamming' 'linear' 'quadratic' 'exponential' 'binodeviance' 'hinge' 'logit'} IsConstant: 1 Tunability: 0
Чтобы использовать значение не по умолчанию в сгенерированном коде, необходимо задать значение прежде, чем сгенерировать код. Задайте атрибут Value
BinaryLoss
как 'exponential'
.
configurer.BinaryLoss.Value = 'exponential';
configurer.BinaryLoss
ans = EnumeratedInput with properties: Value: 'exponential' SelectedOption: 'Built-in' BuiltInOptions: {'hamming' 'linear' 'quadratic' 'exponential' 'binodeviance' 'hinge' 'logit'} IsConstant: 1 Tunability: 1
Если вы изменяете значения атрибута, когда Tunability
является false
(логический ноль), программное обеспечение устанавливает Tunability
на true
(логическая единица).
Отобразите атрибуты кодера Decoding
.
configurer.Decoding
ans = EnumeratedInput with properties: Value: 'lossweighted' SelectedOption: 'Built-in' BuiltInOptions: {'lossweighted' 'lossbased'} IsConstant: 1 Tunability: 0
Задайте атрибут IsConstant
Decoding
как false
так, чтобы можно было использовать все доступные значения в BuiltInOptions
в сгенерированном коде.
configurer.Decoding.IsConstant = false; configurer.Decoding
ans = EnumeratedInput with properties: Value: [1×1 LearnerCoderInput] SelectedOption: 'NonConstant' BuiltInOptions: {'lossweighted' 'lossbased'} IsConstant: 0 Tunability: 1
Программное обеспечение изменяет атрибут Value
Decoding
к объекту LearnerCoderInput
так, чтобы можно было использовать и 'lossweighted'
и 'lossbased
' как значение 'Decoding'
. Кроме того, программное обеспечение устанавливает SelectedOption
на 'NonConstant'
и Tunability
к true
.
Наконец, измените атрибуты кодера SupportVectors
в BinaryLearners
. Отобразите атрибуты кодера SupportVectors
.
configurer.BinaryLearners.SupportVectors
ans = LearnerCoderInput with properties: SizeVector: [54 4] VariableDimensions: [1 0] DataType: 'double' Tunability: 1
Значением по умолчанию VariableDimensions
является [true false]
, потому что у каждого ученика есть различное количество векторов поддержки. Если вы переобучаете модель ECOC с помощью новых данных или различных настроек, количество векторов поддержки в учениках SVM может отличаться. Поэтому увеличьте верхнюю границу количества векторов поддержки.
configurer.BinaryLearners.SupportVectors.SizeVector = [150 4];
SizeVector attribute for Alpha has been modified to satisfy configuration constraints. SizeVector attribute for SupportVectorLabels has been modified to satisfy configuration constraints.
Если вы изменяете атрибуты кодера SupportVectors
, то программное обеспечение изменяет атрибуты кодера Alpha
и SupportVectorLabels
, чтобы удовлетворить ограничения настройки. Если модификация атрибутов кодера одного параметра требует, чтобы последующие изменения к другим зависимым параметрам удовлетворили ограничения настройки, то программное обеспечение изменяет атрибуты кодера зависимых параметров.
Отобразите кодер configurer.
configurer
configurer = ClassificationECOCCoderConfigurer with properties: Update Inputs: BinaryLearners: [1×1 ClassificationSVMCoderConfigurer] Prior: [1×1 LearnerCoderInput] Cost: [1×1 LearnerCoderInput] Predict Inputs: X: [1×1 LearnerCoderInput] BinaryLoss: [1×1 EnumeratedInput] Decoding: [1×1 EnumeratedInput] Code Generation Parameters: NumOutputs: 2 OutputFileName: 'ClassificationECOCModel' Properties, Methods
Отображение теперь включает BinaryLoss
и Decoding
также.
Сгенерируйте код
Чтобы сгенерировать код C/C++, у вас должен быть доступ к компилятору C/C++, который сконфигурирован правильно. MATLAB Coder определяет местоположение и использует поддерживаемый, установленный компилятор. Можно использовать mex
-setup
, чтобы просмотреть и изменить компилятор по умолчанию. Для получения дополнительной информации см. Компилятор Значения по умолчанию Изменения (MATLAB).
Сгенерируйте код для predict
и функций update
модели классификации ECOC (Mdl
) с настройками по умолчанию.
generateCode(configurer)
generateCode creates these files in output folder: 'initialize.m', 'predict.m', 'update.m', 'ClassificationECOCModel.mat'
Функция generateCode
завершает эти действия:
Сгенерируйте файлы MATLAB, требуемые сгенерировать код, включая две функции точки входа predict.m
и update.m
для predict
и функций update
Mdl
, соответственно.
Создайте MEX-функцию под названием ClassificationECOCModel
для двух функций точки входа.
Создайте код для MEX-функции в папке codegen\mex\ClassificationECOCModel
.
Скопируйте MEX-функцию в текущую папку.
Проверьте сгенерированный код
Передайте некоторые данные о предикторе, чтобы проверить, возвращают ли функция predict
Mdl
и функция predict
в MEX-функции те же метки. Чтобы вызвать функцию точки входа в MEX-функции, которая имеет больше чем одну точку входа, задайте имя функции как первый входной параметр. Поскольку вы задали 'Decoding'
как настраиваемый входной параметр путем изменения атрибута IsConstant
прежде, чем сгенерировать код, также необходимо задать его в вызове MEX-функции, даже при том, что 'lossweighted'
является значением по умолчанию 'Decoding'
.
[label,NegLoss] = predict(Mdl,X,'BinaryLoss','exponential'); [label_mex,NegLoss_mex] = ClassificationECOCModel('predict',X,'BinaryLoss','exponential','Decoding','lossweighted');
Сравните label
с label_mex
при помощи isequal
.
isequal(label,label_mex)
ans = logical
1
isequal
возвращает логическую единицу (true
), если все входные параметры равны. Сравнение подтверждает, что функция predict
Mdl
и функция predict
в MEX-функции возвращают те же метки.
NegLoss_mex
может включать различия в округлении по сравнению с NegLoss
. В этом случае сравните NegLoss_mex
с NegLoss
, позволив маленький допуск.
find(abs(NegLoss-NegLoss_mex) > 1e-8)
ans = 0×1 empty double column vector
Сравнение подтверждает, что NegLoss
и NegLoss_mex
равны в допуске 1e–8
.
Переобучите модель и обновите параметры в сгенерированном коде
Переобучите модель с помощью различной установки. Задайте 'KernelScale'
как 'auto'
так, чтобы программное обеспечение выбрало соответствующий масштабный коэффициент с помощью эвристической процедуры.
t_new = templateSVM('KernelFunction','gaussian','Standardize',true,'KernelScale','auto'); retrainedMdl = fitcecoc(X,Y,'Learners',t_new);
Извлеките параметры, чтобы обновить при помощи validatedUpdateInputs
. Эта функция обнаруживает измененные параметры модели в retrainedMdl
и подтверждает, удовлетворяют ли измененные значения параметров атрибуты кодера параметров.
params = validatedUpdateInputs(configurer,retrainedMdl);
Обновите параметры в сгенерированном коде.
ClassificationECOCModel('update',params)
Проверьте сгенерированный код
Сравните выходные параметры от функции predict
retrainedMdl
к выходным параметрам от функции predict
в обновленной MEX-функции.
[label,NegLoss] = predict(retrainedMdl,X,'BinaryLoss','exponential','Decoding','lossbased'); [label_mex,NegLoss_mex] = ClassificationECOCModel('predict',X,'BinaryLoss','exponential','Decoding','lossbased'); isequal(label,label_mex)
ans = logical
1
find(abs(NegLoss-NegLoss_mex) > 1e-8)
ans = 0×1 empty double column vector
Сравнение подтверждает, что labels
и labels_mex
равны, и NegLoss
и NegLoss_mex
равны в допуске.
configurer
— Кодер configurerКодер configurer модели машинного обучения, заданной как кодер configurer объект, создается при помощи learnerCoderConfigurer
.
Модель | Объект кодера Конфигурера |
---|---|
Регрессия машины вектора поддержки (SVM) | RegressionSVMCoderConfigurer |
SVM для и бинарной классификации одного класса | ClassificationSVMCoderConfigurer |
Модель Multiclass для SVMs | ClassificationECOCCoderConfigurer |
retrainedMdl
— Переобученная модель машинного обученияПереобученная модель машинного обучения, заданная как объект полной или компактной модели, как дали в этой таблице поддерживаемых моделей.
Модель | Полная Объектная / Объектная Компактная модель | Учебная функция |
---|---|---|
Регрессия машины вектора поддержки (SVM) | RegressionSVM , CompactRegressionSVM | fitrsvm |
SVM для и бинарной классификации одного класса | ClassificationSVM , CompactClassificationSVM | fitcsvm |
Модель Multiclass для SVMs | ClassificationECOC , CompactClassificationECOC | fitcecoc |
params
— Подтвержденные параметры, чтобы обновитьПодтвержденные параметры, чтобы обновить в модели машинного обучения, заданной как структура с полем для каждого параметра, извлеченного от retrainedMdl
.
Параметры модели в params
включают все параметры, перечисленные в свойство UpdateInputs
configurer
, который является списком настраиваемых параметров модели.
Можно использовать params
в качестве входного параметра update
, чтобы обновить параметры модели.
validatedUpdateInputs
возвращает сообщение об ошибке, если вы изменяете какой-либо из аргументов пары "имя-значение", перечисленных в этой таблице, когда вы переобучаете модель retrainedMdl
. В этом случае вы не можете использовать update
, чтобы обновить параметры. Необходимо сгенерировать код C/C++ снова.
Модель | Аргументы, не поддержанные для обновления |
---|---|
Регрессия SVM | Аргументы fitrsvm — 'KernelFunction' , 'PolynomialOrder' , 'ResponseTransform' , 'Standardize' |
SVM для и бинарной классификации одного класса | Аргументы fitcsvm — 'ClassNames' , 'KernelFunction' , 'PolynomialOrder' , 'ScoreTransform' , 'Standardize' |
Модель Multiclass для SVMs | Аргументы Аргументы |
validatedUpdateInputs
отображает предупреждающее сообщение, если параметры модели машинного обучения в configurer
и retrainedMdl
идентичны.
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.