CompactRegressionGP

Пакет: classreg.learning.regr

Компактный Гауссов класс модели регрессии процесса

Описание

CompactRegressionGP является компактной моделью Gaussian process regression (GPR). Компактная модель использует меньше памяти, чем полная модель, потому что это не включает данные, используемые для обучения модель GPR.

Поскольку компактная модель не включает данные тренировки, вы не можете выполнить некоторые задачи, такие как перекрестная проверка, с помощью компактной модели. Однако можно использовать компактную модель для того, чтобы сделать прогнозы или вычислить, потеря регрессии для новых данных (используйте predict и loss).

Конструкция

compactMdl = compact(gprMdl) возвращает компактную модель GPR, compactMdl, из полной, обученной модели GPR, gprMdl. Для получения дополнительной информации смотрите compact.

Входные параметры

развернуть все

Полная, обученная Гауссова модель регрессии процесса, заданная как модель RegressionGP, возвращенная fitrgp.

Свойства

развернуть все

Подбор кривой

Метод раньше оценивал коэффициенты основной функции, β; шумовое стандартное отклонение, σ; и параметры ядра, θ, модели GPR, сохраненной как вектор символов. Это может быть одно из следующих.

Подходящий методОписание
'none'Никакая оценка. fitrgp использует начальные значения параметров в качестве значений параметров.
'exact'Точная Гауссова регрессия процесса.
'sd'Подмножество приближения точек данных.
'sr'Подмножество приближения регрессоров.
'fic'Полностью независимое условное приближение.

Явная основная функция используется в модели GPR, сохраненной как вектор символов или указатель на функцию. Это может быть одно из следующих. Если n является количеством наблюдений, основная функция добавляет термин H *β к модели, где H является базисной матрицей, и β является p-by-1 вектор базисных коэффициентов.

Явное основаниеБазисная матрица
'none'Пустая матрица.
'constant'

H=1

(n-by-1 вектор 1 с, где n является количеством наблюдений),

'linear'

H=[1,X]

'pureQuadratic'

H=[1,X,X2],

где

X2=[x112x122x1d2x212x222x2d2xn12xn22xnd2].

Указатель на функцию

Указатель на функцию, hfcn, который fitrgp вызывает как:

H=hfcn(X),

где X является n-by-d матрица предикторов, и H является n-by-p матрица основных функций.

Типы данных: char | function_handle

Категориальные индексы предиктора, заданные как вектор положительных целых чисел. CategoricalPredictors содержит индексные значения, соответствующие столбцам данных о предикторе, которые содержат категориальные предикторы. Если ни один из предикторов не является категориальным, то это свойство пусто ([]).

Типы данных: single | double

Предполагаемые коэффициенты для явных основных функций, сохраненных как вектор. Можно задать явную основную функцию при помощи аргумента пары "имя-значение" BasisFunction в fitrgp.

Типы данных: double

Предполагаемое шумовое стандартное отклонение модели GPR, сохраненной как скалярное значение.

Типы данных: double

Параметры использовали для обучения модель GPR, сохраненную как объект GPParams.

Функция ядра

Форма функции ковариации, используемой в модели GPR, сохраненной как вектор символов, содержащий имя встроенной ковариации, функционирует или указатель на функцию. Это может быть одно из следующих.

ФункцияОписание
'squaredexponential'Экспоненциальное ядро в квадрате.
'matern32'Ядро Matern с параметром 3/2.
'matern52'Ядро Matern с параметром 5/2.
'ardsquaredexponential'Экспоненциальное ядро в квадрате с отдельной шкалой расстояний на предиктор.
'ardmatern32'Ядро Matern с параметром 3/2 и отдельная шкала расстояний на предиктор.
'ardmatern52'Ядро Matern с параметром 5/2 и отдельная шкала расстояний на предиктор.
Указатель на функциюУказатель на функцию, который fitrgp может вызвать как это:
Kmn = kfcn(Xm,Xn,theta)
где Xm является m-by-d матрица, Xn является n-by-d матрица, и Kmn является m-by-n матрица продуктов ядра, таким образом, что Kmn (i, j) является продуктом ядра между Xm (i, :) и Xn (j, :).
theta является r-by-1 неограниченный вектор параметра для kfcn.

Типы данных: char | function_handle

Информация о параметрах функции ядра, используемой в модели GPR, сохраненной как структура следующими полями.

Имя поляОписание
NameИмя функции ядра
KernelParametersВектор предполагаемых параметров ядра
KernelParameterNamesИмена сопоставлены с элементами KernelParameters.

Типы данных: struct

Предсказание

Метод, что использование predict, чтобы сделать прогнозы из модели GPR, сохраненной как вектор символов. Это может быть одно из следующих.

PredictMethodОписание
'exact'Точная Гауссова регрессия процесса
'bcd'Блокируйте координатный спуск
'sd'Подмножество приближения Точек данных
'sr'Подмножество приближения Регрессоров
'fic'Полностью Независимое Условное приближение

Веса раньше делали прогнозы из обученной модели GPR, сохраненной как числовой вектор. predict вычисляет прогнозы для новой матрицы предиктора Xnew при помощи продукта

K(Xnew,A)*α.

K(Xnew,A) матрица продуктов ядра между Xnew и активный вектор набора A и α является вектором весов.

Типы данных: double

Преобразование применилось к предсказанному ответу, сохраненному как вектор символов, описывающий, как значения ответа, предсказанные моделью, преобразовываются. В RegressionGP ResponseTransform является 'none' по умолчанию, и RegressionGP не использует ResponseTransform при создании прогнозов.

Активный выбор набора

Подмножество данных тренировки раньше делало прогнозы из модели GPR, сохраненной как матрица.

predict вычисляет прогнозы для новой матрицы предиктора Xnew при помощи продукта

K(Xnew,A)*α.

K(Xnew,A) матрица продуктов ядра между Xnew и активный вектор набора A и α является вектором весов.

ActiveSetVectors равен данным тренировки X для точного подбора кривой GPR и подмножества данных тренировки X для разреженных методов GPR. Когда существуют категориальные предикторы в модели, ActiveSetVectors содержит фиктивные переменные для соответствующих предикторов.

Типы данных: double

Метод раньше выбирал активный набор для разреженных методов ('sd', 'sr' или 'fic'), сохраненный как вектор символов. Это может быть одно из следующих.

ActiveSetMethodОписание
'sgma'Разреженное жадное матричное приближение
'entropy'Дифференциальный основанный на энтропии выбор
'likelihood'Подмножество регрессоров регистрирует основанный на вероятности выбор
'random'Случайный выбор

Выбранный активный набор используется по оценке параметра или прогнозу, в зависимости от выбора FitMethod и PredictMethod в fitrgp.

Размер активного набора для разреженных методов ('sd', 'sr' или 'fic'), сохраненный как целочисленное значение.

Типы данных: double

Методы

потеряОшибка регрессии для Гауссовой модели регрессии процесса
предсказатьПредскажите ответ Гауссовой модели регрессии процесса

Копировать семантику

Значение. Чтобы изучить, как классы значения влияют на операции копии, смотрите Копирование Объектов (MATLAB).

Расширенные возможности

Введенный в R2015b

Для просмотра документации необходимо авторизоваться на сайте