covarianceParameters

Класс: GeneralizedLinearMixedModel

Извлеките параметры ковариации обобщенной линейной модели смешанных эффектов

Синтаксис

psi = covarianceParameters(glme)
[psi,dispersion] = covarianceParameters(glme)
[psi,dispersion,stats] = covarianceParameters(glme)
[___] = covarianceParameters(glme,Name,Value)

Описание

psi = covarianceParameters(glme) возвращает предполагаемые предшествующие параметры ковариации предикторов случайных эффектов в обобщенной линейной модели glme смешанных эффектов.

[psi,dispersion] = covarianceParameters(glme) также возвращает оценку дисперсионного параметра.

пример

[psi,dispersion,stats] = covarianceParameters(glme) также возвращает массив ячеек stats, содержащий оценки параметра ковариации и связанную статистику.

[___] = covarianceParameters(glme,Name,Value) возвращает любой из вышеупомянутых выходных аргументов с помощью дополнительных опций, заданных одним или несколькими аргументами пары Name,Value. Например, можно задать доверительный уровень для пределов достоверности параметров ковариации.

Входные параметры

развернуть все

Обобщенная линейная модель смешанных эффектов, заданная как объект GeneralizedLinearMixedModel. Для свойств и методов этого объекта, смотрите GeneralizedLinearMixedModel.

Аргументы в виде пар имя-значение

Укажите необязательные аргументы в виде пар ""имя, значение"", разделенных запятыми. Имя (Name) — это имя аргумента, а значение (Value) — соответствующее значение. Name должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN.

Уровень значения, заданный как пара, разделенная запятой, состоящая из 'Alpha' и скалярного значения в области значений [0,1]. Для значения α, доверительный уровень является 100 × (1 – α) %.

Например, для 99% доверительных интервалов, можно задать доверительный уровень можно следующим образом.

Пример: 'Alpha',0.01

Типы данных: single | double

Выходные аргументы

развернуть все

Предполагаемые предшествующие параметры ковариации для предикторов случайных эффектов, возвращенных как массив ячеек длины R, где R является количеством группирующих переменных, используемых в модели. psi{r} содержит ковариационную матрицу случайных эффектов, сопоставленных с группирующей переменной gr, где r = 1, 2..., R, порядок группирующих переменных в psi совпадает с заказом, введенным при подборе кривой модели. Для получения дополнительной информации о группирующих переменных смотрите Группирующие переменные.

Дисперсионный параметр, возвращенный как скалярное значение.

Параметр ковариации оценивает и связанная статистика, возвращенная как массив ячеек длины (R + 1), где R является количеством группирующих переменных, используемых в модели. Первые ячейки R stats каждый содержит массив набора данных со следующими столбцами.

ColumnName Описание
GroupИмя группирующей переменной
Name1Имя первой переменной прогноза
Name2Имя второй переменной прогноза
Type

Если Name1 и Name2 являются тем же самым, то Type является std (стандартное отклонение).

Если Name1 и Name2 отличаются, то Type является corr (корреляция).

Estimate

Если Name1 и Name2 являются тем же самым, то Estimate является стандартным отклонением случайного эффекта, сопоставленного с предиктором Name1 или Name2.

Если Name1 и Name2 отличаются, то Estimate является корреляцией между случайными эффектами, сопоставленными с предикторами Name1 и Name2.

LowerНижний предел доверительного интервала для параметра ковариации
UpperВерхний предел доверительного интервала для параметра ковариации

Ячейка R + 1 содержит связанную статистику для дисперсионного параметра.

Рекомендуется, чтобы присутствие или отсутствие параметров ковариации в glme были протестированы с помощью метода compare, который использует тест отношения правдоподобия.

При подборе кривой модели GLME с помощью fitglme и одного из методов подгонки наибольшего правдоподобия ('Laplace' или 'ApproximateLaplace'), covarianceParameters выводит доверительные интервалы в stats на основе приближения Лапласа к логарифмической вероятности обобщенной линейной модели смешанных эффектов.

При подборе кривой модели GLME с помощью fitglme и одного из псевдо методов подгонки вероятности ('MPL' или 'REMPL'), covarianceParameters выводит доверительные интервалы в stats на основе подходящей линейной модели смешанных эффектов от итоговой псевдо итерации вероятности.

Примеры

развернуть все

Загрузите выборочные данные.

load mfr

Эти моделируемые данные от компании-производителя, которая управляет 50 фабриками во всем мире с каждой фабрикой, запускающей процесс пакетной обработки, чтобы создать готовое изделие. Компания хочет сократить число дефектов в каждом пакете, таким образом, это разработало новый производственный процесс. Чтобы протестировать эффективность нового процесса, компания выбрала 20 своих фабрик наугад, чтобы участвовать в эксперименте: Десять фабрик реализовали новый процесс, в то время как другие десять продолжали запускать старый процесс. На каждой из этих 20 фабрик компания запустила пять пакетов (для в общей сложности 100 пакетов) и записала следующие данные:

  • Отметьте, чтобы указать, использовал ли пакет новый процесс (newprocess)

  • Время вычислений для каждого пакета, в часах (time)

  • Температура пакета, в градусах Цельсия (temp)

  • Категориальная переменная, указывающая на поставщика (A, B или C) химиката, используемого в пакете (supplier)

  • Количество дефектов в пакете (defects)

Данные также включают time_dev и temp_dev, которые представляют абсолютное отклонение времени и температуры, соответственно, из стандарта процесса 3 часов на уровне 20 градусов Цельсия.

Соответствуйте обобщенной линейной модели смешанных эффектов использование newprocess, time_dev, temp_dev и supplier как предикторы фиксированных эффектов. Включайте термин случайных эффектов для прерывания, сгруппированного factory, чтобы составлять качественные различия, которые могут существовать из-за специфичных для фабрики изменений. Переменная отклика defects имеет распределение Пуассона и соответствующую функцию ссылки для этой модели, является журналом. Используйте подходящий метод Лапласа, чтобы оценить коэффициенты. Задайте фиктивную переменную, кодирующую как 'effects', таким образом, фиктивная переменная содействующая сумма к 0.

Количество дефектов может быть смоделировано с помощью распределения Пуассона

дефектыijПуассон(μij)

Это соответствует обобщенной линейной модели смешанных эффектов

журнал(μij)=β0+β1newprocessij+β2time_devij+β3temp_devij+β4supplier_Cij+β5supplier_Bij+bi,

где

  • дефектыij количество дефектов, наблюдаемых в пакете, произведенном фабрикой i во время пакета j.

  • μij среднее количество дефектов, соответствующих фабрике i (где i=1,2,...,20) во время пакета j (где j=1,2,...,5).

  • newprocessij, time_devij, и temp_devij измерения для каждой переменной, которые соответствуют фабрике i во время пакета j. Например, newprocessij указывает ли пакет, произведенный фабрикой i во время пакета j используемый новый процесс.

  • supplier_Cij и supplier_Bij фиктивные переменные, которые используют эффекты (сумма к нулю), кодирование, чтобы указать или компания C или B, соответственно, предоставило химикаты процесса для пакета, произведенного фабрикой i во время пакета j.

  • biN(0,σb2) прерывание случайных эффектов для каждой фабрики i это составляет специфичное для фабрики изменение по качеству.

glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');

Вычислите и отобразите оценку предшествующего параметра ковариации для предиктора случайных эффектов.

[psi,dispersion,stats] = covarianceParameters(glme);
psi{1}
ans = 0.0985

psi{1} является оценкой предшествующей ковариационной матрицы первой группирующей переменной. В этом примере существует только одна группирующая переменная (factory), таким образом, psi{1} является оценкой σb2.

Отобразите дисперсионный параметр.

dispersion
dispersion = 1

Отобразите предполагаемое стандартное отклонение случайного эффекта, сопоставленного с предиктором. Первая ячейка stats содержит статистику для factory, в то время как вторая ячейка содержит статистику для дисперсионного параметра.

stats{1}
ans = 
    Covariance Type: Isotropic

    Group      Name1                Name2                Type         Estimate
    factory    '(Intercept)'        '(Intercept)'        'std'        0.31381 


    Lower      Upper  
    0.19253    0.51148

Предполагаемое стандартное отклонение случайного эффекта, сопоставленного с предиктором, 0.31381. 95%-й доверительный интервал [0.19253, 0.51148]. Поскольку доверительный интервал не содержит 0, случайное прерывание является значительным на 5%-м уровне значения.

Для просмотра документации необходимо авторизоваться на сайте