Класс: GeneralizedLinearMixedModel
Оценки случайных эффектов и связанной статистики
B = randomEffects(glme)
[B,BNames]
= randomEffects(glme)
[B,BNames,stats]
= randomEffects(glme)
[B,BNames,stats]
= randomEffects(glme,Name,Value)
[
возвращает любой из вышеупомянутых выходных аргументов с помощью дополнительных опций, заданных одним или несколькими аргументами пары B
,BNames
,stats
]
= randomEffects(glme
,Name,Value
)Name,Value
. Например, можно задать уровень доверительного интервала или метод для вычисления аппроксимированных степеней свободы.
glme
— Обобщенная линейная модель смешанных эффектовGeneralizedLinearMixedModel
Обобщенная линейная модель смешанных эффектов, заданная как объект GeneralizedLinearMixedModel
. Для свойств и методов этого объекта, смотрите GeneralizedLinearMixedModel
.
Укажите необязательные аргументы в виде пар ""имя, значение"", разделенных запятыми.
Имя (Name) — это имя аргумента, а значение (Value) — соответствующее значение.
Name
должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN.
\alpha
Уровень значенияУровень значения, заданный как пара, разделенная запятой, состоящая из 'Alpha'
и скалярного значения в области значений [0,1]. Для значения α, доверительный уровень является 100 × (1 – α) %.
Например, для 99% доверительных интервалов, можно задать доверительный уровень можно следующим образом.
Пример: 'Alpha',0.01
Типы данных: single | double
'DFMethod'
— Метод для вычисления аппроксимированных степеней свободы'residual'
(значение по умолчанию) | 'none'
Метод для вычисления аппроксимированных степеней свободы, заданных как пара, разделенная запятой, состоящая из 'DFMethod'
и одно из следующих.
Значение | Описание |
---|---|
'residual' | Значение степеней свободы принято, чтобы быть постоянным и равным n – p, где n является количеством наблюдений, и p является количеством фиксированных эффектов. |
'none' | Степени свободы установлены в бесконечность. |
Пример: 'DFMethod','none'
B
Предполагаемые эмпирические предикторы Бейеса для случайных эффектовПредполагаемые эмпирические предикторы Бейеса (EBPs) для случайных эффектов в обобщенной линейной модели glme
смешанных эффектов, возвращенной как вектор-столбец. EBPs в B
аппроксимированы режимом эмпирического апостериорного распределения случайных эффектов, учитывая предполагаемые параметры ковариации и наблюдаемый ответ.
Предположим, что glme
имеет группирующие переменные R g1, g2..., gR, с уровнями m 1, m 2..., m R, соответственно. Также предположите q 1, q 2..., q R длины векторов случайных эффектов, которые сопоставлены с g1, g2..., gR, соответственно. Затем B
является вектор-столбцом длины q 1*m1 + q 2*m2 +... + q R *mR.
randomEffects
создает B
путем конкатенации эмпирических предикторов Бейеса векторов случайных эффектов, соответствующих каждому уровню каждой группирующей переменной как [g1level1; g1level2; ...; g1levelm1; g2level1; g2level2; ...; g2levelm2; ...; gRlevel1; gRlevel2; ...; gRlevelmR]'
.
BNames
— Имена коэффициентов случайных эффектовИмена коэффициентов случайных эффектов в B
, возвращенном как таблица.
статистика
Предполагаемые эмпирические предикторы Бейеса и связанная статистикаПредполагаемые эмпирические предикторы Бейеса (EBPs) и связанная статистика для случайных эффектов в обобщенной линейной модели glme
смешанных эффектов, возвращенной как таблица. stats
ссорится для каждого из случайных эффектов и одного столбца для каждых из следующих статистических данных.
ColumnName | Описание |
---|---|
Group | Группирующая переменная сопоставлена со случайным эффектом |
Level | Уровень в группирующей переменной, соответствующей случайному эффекту |
Name | Имя коэффициента случайного эффекта |
Estimate | Эмпирический байесов предиктор (EBP) случайного эффекта |
SEPred | Квадратный корень из условной среднеквадратической ошибки прогноза (CMSEP), данный параметры ковариации и ответ |
tStat | t- для теста, что коэффициент случайных эффектов равен 0 |
DF | Предполагаемые степени свободы для t - статистическая величина |
pValue | p - значение для t - статистическая величина |
Lower | Нижний предел 95%-го доверительного интервала для коэффициента случайных эффектов |
Upper | Верхний предел 95%-го доверительного интервала для коэффициента случайных эффектов |
randomEffects
вычисляет доверительные интервалы с помощью условной среднеквадратической ошибки прогноза условное выражение подхода (CMSEP) на предполагаемых параметрах ковариации и наблюдаемом ответе. Альтернативная интерпретация доверительных интервалов - то, что они - аппроксимированное Байесово вероятное условное выражение интервалов на предполагаемых параметрах ковариации и наблюдаемом ответе.
При подборе кривой модели GLME с помощью fitglme
и одного из псевдо методов подгонки вероятности ('MPL'
или 'REMPL'
), randomEffects
вычисляет доверительные интервалы и связанную статистику на основе подходящей линейной модели смешанных эффектов от итоговой псевдо итерации вероятности.
Загрузите выборочные данные.
load mfr
Эти моделируемые данные от компании-производителя, которая управляет 50 фабриками во всем мире с каждой фабрикой, запускающей процесс пакетной обработки, чтобы создать готовое изделие. Компания хочет сократить число дефектов в каждом пакете, таким образом, это разработало новый производственный процесс. Чтобы протестировать эффективность нового процесса, компания выбрала 20 своих фабрик наугад, чтобы участвовать в эксперименте: Десять фабрик реализовали новый процесс, в то время как другие десять продолжали запускать старый процесс. На каждой из этих 20 фабрик компания запустила пять пакетов (для в общей сложности 100 пакетов) и записала следующие данные:
Отметьте, чтобы указать, использовал ли пакет новый процесс (newprocess
)
Время вычислений для каждого пакета, в часах (time
)
Температура пакета, в градусах Цельсия (temp
)
Категориальная переменная, указывающая на поставщика (A
, B
или C
) химиката, используемого в пакете (supplier
)
Количество дефектов в пакете (defects
)
Данные также включают time_dev
и temp_dev
, которые представляют абсолютное отклонение времени и температуры, соответственно, из стандарта процесса 3 часов на уровне 20 градусов Цельсия.
Соответствуйте обобщенной линейной модели смешанных эффектов использование newprocess
, time_dev
, temp_dev
и supplier
как предикторы фиксированных эффектов. Включайте термин случайных эффектов для прерывания, сгруппированного factory
, чтобы составлять качественные различия, которые могут существовать из-за специфичных для фабрики изменений. Переменная отклика defects
имеет распределение Пуассона и соответствующую функцию ссылки для этой модели, является журналом. Используйте подходящий метод Лапласа, чтобы оценить коэффициенты. Задайте фиктивную переменную, кодирующую как 'effects'
, таким образом, фиктивная переменная содействующая сумма к 0.
Количество дефектов может быть смоделировано с помощью распределения Пуассона
Это соответствует обобщенной линейной модели смешанных эффектов
где
количество дефектов, наблюдаемых в пакете, произведенном фабрикой во время пакета .
среднее количество дефектов, соответствующих фабрике (где ) во время пакета (где ).
, , и измерения для каждой переменной, которые соответствуют фабрике во время пакета . Например, указывает ли пакет, произведенный фабрикой во время пакета используемый новый процесс.
и фиктивные переменные, которые используют эффекты (сумма к нулю), кодирование, чтобы указать или компания C
или B
, соответственно, предоставило химикаты процесса для пакета, произведенного фабрикой во время пакета .
прерывание случайных эффектов для каждой фабрики это составляет специфичное для фабрики изменение по качеству.
glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');
Вычислите и отобразите имена и ориентировочные стоимости эмпирических предикторов Бейеса (EBPs) для случайных эффектов.
[B,BNames] = randomEffects(glme)
B = 20×1
0.2913
0.1542
-0.2633
-0.4257
0.5453
-0.1069
0.3040
-0.1653
-0.1458
-0.0816
⋮
BNames=20×3 table
Group Level Name
_________ _____ _____________
'factory' '1' '(Intercept)'
'factory' '2' '(Intercept)'
'factory' '3' '(Intercept)'
'factory' '4' '(Intercept)'
'factory' '5' '(Intercept)'
'factory' '6' '(Intercept)'
'factory' '7' '(Intercept)'
'factory' '8' '(Intercept)'
'factory' '9' '(Intercept)'
'factory' '10' '(Intercept)'
'factory' '11' '(Intercept)'
'factory' '12' '(Intercept)'
'factory' '13' '(Intercept)'
'factory' '14' '(Intercept)'
'factory' '15' '(Intercept)'
'factory' '16' '(Intercept)'
⋮
Каждая строка B
содержит предполагаемый EPB для коэффициента случайных эффектов, названного в соответствующей строке Bnames
. Например, значение –0.2633 в строке 3 B
является предполагаемым EPB для '(Intercept)'
для уровня '3'
factory
.
Загрузите выборочные данные.
load mfr
Эти моделируемые данные от компании-производителя, которая управляет 50 фабриками во всем мире с каждой фабрикой, запускающей процесс пакетной обработки, чтобы создать готовое изделие. Компания хочет сократить число дефектов в каждом пакете, таким образом, это разработало новый производственный процесс. Чтобы протестировать эффективность нового процесса, компания выбрала 20 своих фабрик наугад, чтобы участвовать в эксперименте: Десять фабрик реализовали новый процесс, в то время как другие десять продолжали запускать старый процесс. На каждой из этих 20 фабрик компания запустила пять пакетов (для в общей сложности 100 пакетов) и записала следующие данные:
Отметьте, чтобы указать, использовал ли пакет новый процесс (newprocess
)
Время вычислений для каждого пакета, в часах (time
)
Температура пакета, в градусах Цельсия (temp
)
Категориальная переменная, указывающая на поставщика (A
, B
или C
) химиката, используемого в пакете (supplier
)
Количество дефектов в пакете (defects
)
Данные также включают time_dev
и temp_dev
, которые представляют абсолютное отклонение времени и температуры, соответственно, из стандарта процесса 3 часов на уровне 20 градусов Цельсия.
Соответствуйте обобщенной линейной модели смешанных эффектов использование newprocess
, time_dev
, temp_dev
и supplier
как предикторы фиксированных эффектов. Включайте термин случайных эффектов для прерывания, сгруппированного factory
, чтобы составлять качественные различия, которые могут существовать из-за специфичных для фабрики изменений. Переменная отклика defects
имеет распределение Пуассона и соответствующую функцию ссылки для этой модели, является журналом. Используйте подходящий метод Лапласа, чтобы оценить коэффициенты. Задайте фиктивную переменную, кодирующую как 'effects'
, таким образом, фиктивная переменная содействующая сумма к 0.
Количество дефектов может быть смоделировано с помощью распределения Пуассона
Это соответствует обобщенной линейной модели смешанных эффектов
где
количество дефектов, наблюдаемых в пакете, произведенном фабрикой во время пакета .
среднее количество дефектов, соответствующих фабрике (где ) во время пакета (где ).
, , и измерения для каждой переменной, которые соответствуют фабрике во время пакета . Например, указывает ли пакет, произведенный фабрикой во время пакета используемый новый процесс.
и фиктивные переменные, которые используют эффекты (сумма к нулю), кодирование, чтобы указать или компания C
или B
, соответственно, предоставило химикаты процесса для пакета, произведенного фабрикой во время пакета .
прерывание случайных эффектов для каждой фабрики это составляет специфичное для фабрики изменение по качеству.
glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)',... 'Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');
Вычислите и отобразите 99% доверительных интервалов для коэффициентов случайных эффектов.
[B,BNames,stats] = randomEffects(glme,'Alpha',0.01);
stats
stats = Random effect coefficients: DFMethod = 'residual', Alpha = 0.01 Group Level Name Estimate SEPred 'factory' '1' '(Intercept)' 0.29131 0.19163 'factory' '2' '(Intercept)' 0.15423 0.19216 'factory' '3' '(Intercept)' -0.26325 0.21249 'factory' '4' '(Intercept)' -0.42568 0.21667 'factory' '5' '(Intercept)' 0.5453 0.17963 'factory' '6' '(Intercept)' -0.10692 0.20133 'factory' '7' '(Intercept)' 0.30404 0.18397 'factory' '8' '(Intercept)' -0.16527 0.20505 'factory' '9' '(Intercept)' -0.14577 0.203 'factory' '10' '(Intercept)' -0.081632 0.20256 'factory' '11' '(Intercept)' 0.014529 0.21421 'factory' '12' '(Intercept)' 0.17706 0.20721 'factory' '13' '(Intercept)' 0.24872 0.20522 'factory' '14' '(Intercept)' 0.21145 0.20678 'factory' '15' '(Intercept)' 0.2777 0.20345 'factory' '16' '(Intercept)' -0.25175 0.22568 'factory' '17' '(Intercept)' -0.13507 0.22301 'factory' '18' '(Intercept)' -0.1627 0.22269 'factory' '19' '(Intercept)' -0.32083 0.23294 'factory' '20' '(Intercept)' 0.058418 0.21481 tStat DF pValue Lower Upper 1.5202 94 0.13182 -0.21251 0.79514 0.80259 94 0.42423 -0.351 0.65946 -1.2389 94 0.21846 -0.82191 0.29541 -1.9646 94 0.052408 -0.99534 0.14398 3.0356 94 0.0031051 0.073019 1.0176 -0.53105 94 0.59664 -0.63625 0.42241 1.6527 94 0.10173 -0.17964 0.78771 -0.80597 94 0.42229 -0.70438 0.37385 -0.71806 94 0.4745 -0.67949 0.38795 -0.403 94 0.68786 -0.61419 0.45093 0.067826 94 0.94607 -0.54866 0.57772 0.85446 94 0.39502 -0.36774 0.72185 1.212 94 0.22857 -0.29083 0.78827 1.0226 94 0.30913 -0.33221 0.75511 1.365 94 0.17552 -0.25719 0.81259 -1.1156 94 0.26746 -0.84509 0.34158 -0.60568 94 0.54619 -0.7214 0.45125 -0.73061 94 0.46684 -0.74817 0.42278 -1.3773 94 0.17168 -0.93325 0.29159 0.27195 94 0.78626 -0.50635 0.62319
Первые три столбца stats
содержат название группы, уровень и содействующее имя случайных эффектов. Столбец 4 содержит предполагаемый EBP коэффициента случайных эффектов. Последние два столбца stats
, Lower
и Upper
, содержат нижние и верхние границы 99%-го доверительного интервала, соответственно. Например, для коэффициента для '(Intercept)'
для уровня 3
factory
, предполагаемый EBP-0.26325, и 99%-й доверительный интервал [-0.82191,0.29541].
[1] Стенд, J.G., и Дж.П. Хоберт. “Стандартные погрешности Прогноза в Обобщенных Линейных Смешанных Моделях”. Журнал американской Статистической Ассоциации, Издания 93, 1998, стр 262–272.
GeneralizedLinearMixedModel
| coefCI
| coefTest
| fixedEffects
1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.
2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.
3. Сохраняйте структуру оригинального текста - например, не разбивайте одно предложение на два.
4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.
5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.