plotResiduals

Класс: GeneralizedLinearMixedModel

Постройте невязки обобщенной линейной модели смешанных эффектов

Синтаксис

plotResiduals(glme,plottype)
plotResiduals(glme,plottype,Name,Value)
h = plotResiduals(___)

Описание

plotResiduals(glme,plottype) строит необработанные условные невязки обобщенной линейной модели glme смешанных эффектов в графике типа, заданного plottype.

пример

plotResiduals(glme,plottype,Name,Value) строит условные невязки glme с помощью дополнительных опций, заданных одним или несколькими аргументами пары Name,Value. Например, можно задать, чтобы построить невязки Пирсона.

h = plotResiduals(___) возвращает указатель, h, к строкам или закрашенным фигурам в графике невязок.

Входные параметры

развернуть все

Обобщенная линейная модель смешанных эффектов, заданная как объект GeneralizedLinearMixedModel. Для свойств и методов этого объекта, смотрите GeneralizedLinearMixedModel.

Тип остаточного графика, заданного как одно из следующих.

ЗначениеОписание
'histogram'Гистограмма невязок
'caseorder'Невязки по сравнению с порядком случая. Порядок случая совпадает с порядком строк, используемым во входных данных tbl при подборе кривой модели с помощью fitglme.
'fitted'Невязки по сравнению с подходящими значениями
'lagged'Невязки по сравнению с изолированной невязкой (r (t) по сравнению с r (t – 1))
'probability'График нормального распределения
'symmetry' График симметрии

Пример: plotResiduals(glme,'lagged')

Аргументы в виде пар имя-значение

Укажите необязательные аргументы в виде пар ""имя, значение"", разделенных запятыми. Имя (Name) — это имя аргумента, а значение (Value) — соответствующее значение. Name должен появиться в кавычках. Вы можете задать несколько аргументов в виде пар имен и значений в любом порядке, например: Name1, Value1, ..., NameN, ValueN.

Остаточный тип, заданный парой, разделенной запятой, состоящей из ResidualType и одно из следующих.

Остаточный типФормула
'raw'

rci=yig1(xiTβ^+ziTb^+δi)

'Pearson'

rcipearson=rciσ2^wivi(μi(β^,b^))

В каждом из этих уравнений:

  • yi является i th элемент n-by-1 вектор отклика, y, где i = 1..., n.

  • g-1 является обратной функцией ссылки для модели.

  • xi T является i th, строка фиксированных эффектов разрабатывают матричный X.

  • zi T является i th, строка случайных эффектов разрабатывают матричный Z.

  • δi является i th значение смещения.

  • σ 2 является дисперсионным параметром.

  • wi является i th вес наблюдения.

  • vi является термином отклонения для i th наблюдение.

  • μi является средним значением ответа для i th наблюдение.

  • β^ и b^ ориентировочные стоимости β и b.

Необработанные невязки из обобщенной линейной модели смешанных эффектов имеют непостоянное отклонение. Невязки Пирсона, как ожидают, будут иметь приблизительно постоянное отклонение и обычно используются для анализа.

Пример: 'ResidualType','Pearson'

Выходные аргументы

развернуть все

Обработайте к остаточному графику, возвращенному как графический объект. Можно использовать запись через точку, чтобы изменить определенные значения свойств объекта, включая цвет поверхности для гистограммы, и стиль маркера и цвет для scatterplot. Для получения дополнительной информации см. Доступ к значениям свойств (MATLAB).

Примеры

развернуть все

Загрузите выборочные данные.

load mfr

Эти моделируемые данные от компании-производителя, которая управляет 50 фабриками во всем мире с каждой фабрикой, запускающей процесс пакетной обработки, чтобы создать готовое изделие. Компания хочет сократить число дефектов в каждом пакете, таким образом, это разработало новый производственный процесс. Чтобы протестировать эффективность нового процесса, компания выбрала 20 своих фабрик наугад, чтобы участвовать в эксперименте: Десять фабрик реализовали новый процесс, в то время как другие десять продолжали запускать старый процесс. На каждой из этих 20 фабрик компания запустила пять пакетов (для в общей сложности 100 пакетов) и записала следующие данные:

  • Отметьте, чтобы указать, использовал ли пакет новый процесс (newprocess)

  • Время вычислений для каждого пакета, в часах (time)

  • Температура пакета, в градусах Цельсия (temp)

  • Категориальная переменная, указывающая на поставщика (A, B или C) химиката, используемого в пакете (supplier)

  • Количество дефектов в пакете (defects)

Данные также включают time_dev и temp_dev, которые представляют абсолютное отклонение времени и температуры, соответственно, из стандарта процесса 3 часов на уровне 20 градусов Цельсия.

Соответствуйте обобщенной линейной модели смешанных эффектов использование newprocess, time_dev, temp_dev и supplier как предикторы фиксированных эффектов. Включайте термин случайных эффектов для прерывания, сгруппированного factory, чтобы составлять качественные различия, которые могут существовать из-за специфичных для фабрики изменений. Переменная отклика defects имеет распределение Пуассона и соответствующую функцию ссылки для этой модели, является журналом. Используйте подходящий метод Лапласа, чтобы оценить коэффициенты. Задайте фиктивную переменную, кодирующую как 'effects', таким образом, фиктивная переменная содействующая сумма к 0.

Количество дефектов может быть смоделировано с помощью распределения Пуассона:

дефектыijПуассон(μij)

Это соответствует обобщенной линейной модели смешанных эффектов

журнал(μij)=β0+β1newprocessij+β2time_devij+β3temp_devij+β4supplier_Cij+β5supplier_Bij+bi,

где

  • дефектыij количество дефектов, наблюдаемых в пакете, произведенном фабрикой i во время пакета j.

  • μij среднее количество дефектов, соответствующих фабрике i (где i=1,2,...,20) во время пакета j (где j=1,2,...,5).

  • newprocessij, time_devij, и temp_devij измерения для каждой переменной, которые соответствуют фабрике i во время пакета j. Например, newprocessij указывает ли пакет, произведенный фабрикой i во время пакета j используемый новый процесс.

  • supplier_Cij и supplier_Bij фиктивные переменные, которые используют эффекты (сумма к нулю), кодирование, чтобы указать или компания C или B, соответственно, предоставило химикаты процесса для пакета, произведенного фабрикой i во время пакета j.

  • biN(0,σb2) прерывание случайных эффектов для каждой фабрики i это составляет специфичное для фабрики изменение по качеству.

glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)','Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');

Создайте диагностические графики с помощью невязок Пирсона, чтобы протестировать образцовые предположения.

Постройте гистограмму, чтобы визуально подтвердить, что среднее значение невязок Пирсона равно 0. Если модель будет правильна, мы ожидаем, что невязки Пирсона будут сосредоточены в 0.

plotResiduals(glme,'histogram','ResidualType','Pearson')

Гистограмма показывает, что невязки Пирсона сосредоточены в 0.

Постройте невязки Пирсона по сравнению с подходящими значениями, чтобы проверять на знаки непостоянного отклонения среди невязок (heteroscedasticity). Мы ожидаем, что условное выражение невязки Пирсона будет иметь постоянное отклонение. Поэтому график условного выражения, невязки Пирсона по сравнению с условным выражением соответствовали значениям, не должен показывать, что любая систематическая зависимость от условного выражения соответствовала значениям.

plotResiduals(glme,'fitted','ResidualType','Pearson')

График не показывает систематическую зависимость от подходящих значений, таким образом, нет никаких знаков непостоянного отклонения среди невязок.

Постройте невязки Пирсона по сравнению с изолированными невязками, чтобы проверять на корреляцию среди невязок. Условное предположение независимости в GLME подразумевает, что условное выражение невязки Пирсона является приблизительно некоррелированым.

plotResiduals(glme,'lagged','ResidualType','Pearson')

Нет никакого шаблона к графику, таким образом, нет никаких знаков корреляции среди невязок.

Смотрите также

| | | |

Для просмотра документации необходимо авторизоваться на сайте